2000 - 2020年全球贸易中木材的增加和活植物多样性和数量的减少

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-12-19 DOI:10.1038/s43247-024-01950-2
Alireza Naqinezhad, Oscar Morton, David P. Edwards
{"title":"2000 - 2020年全球贸易中木材的增加和活植物多样性和数量的减少","authors":"Alireza Naqinezhad, Oscar Morton, David P. Edwards","doi":"10.1038/s43247-024-01950-2","DOIUrl":null,"url":null,"abstract":"Plants are a vast, lucrative portion of global wildlife trade and the most speciose clade listed under the Convention on International Trade in Endangered Species of Wild Fauna and Flora-CITES. Here we used the CITES Trade Database and >420,000 records between 2000 and 2020 and assessed the diversity and volume of wild-sourced CITES-listed plants across space and time. Between 2000–2020, over 8.4 million cubic metres of timber, 197 million individual live plants, and 4.6 million kilograms of plant products were traded under CITES, comprising 53, 765, and 74 species, respectively. Most species are traded between key exporter and importer nations, especially China, USA, and Europe. Total diversity of timber species and volumes increased over time, whereas live diversity declined, and product diversity and mass fluctuated uncertainly. Most species were not evaluated by the International Union for the Conservation of Nature (IUCN) Red List when first traded, with high volumes of timber and products concentrated among threatened taxa. The high prevalence of poorly understood species necessitates enhanced rigour in ensuring sustainable CITES trade. More than 8.4 million cubic metres of timber, 197 million live plants, and 4.6 million kilograms of plant products listed by the Convention on International Trade in Endangered Species were traded globally from 2000 to 2020, according to an analysis that uses trade data and a statistical approach.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01950-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Increasing timber and declining live plant diversity and volumes in global trade from 2000 to 2020\",\"authors\":\"Alireza Naqinezhad, Oscar Morton, David P. Edwards\",\"doi\":\"10.1038/s43247-024-01950-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants are a vast, lucrative portion of global wildlife trade and the most speciose clade listed under the Convention on International Trade in Endangered Species of Wild Fauna and Flora-CITES. Here we used the CITES Trade Database and >420,000 records between 2000 and 2020 and assessed the diversity and volume of wild-sourced CITES-listed plants across space and time. Between 2000–2020, over 8.4 million cubic metres of timber, 197 million individual live plants, and 4.6 million kilograms of plant products were traded under CITES, comprising 53, 765, and 74 species, respectively. Most species are traded between key exporter and importer nations, especially China, USA, and Europe. Total diversity of timber species and volumes increased over time, whereas live diversity declined, and product diversity and mass fluctuated uncertainly. Most species were not evaluated by the International Union for the Conservation of Nature (IUCN) Red List when first traded, with high volumes of timber and products concentrated among threatened taxa. The high prevalence of poorly understood species necessitates enhanced rigour in ensuring sustainable CITES trade. More than 8.4 million cubic metres of timber, 197 million live plants, and 4.6 million kilograms of plant products listed by the Convention on International Trade in Endangered Species were traded globally from 2000 to 2020, according to an analysis that uses trade data and a statistical approach.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01950-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01950-2\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01950-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物是全球野生动物贸易中一个巨大而有利可图的部分,也是《濒危野生动植物种国际贸易公约》(cites)列出的物种最多的分支。在这里,我们使用了CITES贸易数据库和2000年至2020年间的420,000条记录,并评估了跨时空的野生来源CITES列入植物的多样性和数量。在2000年至2020年期间,根据《濒危野生动植物种国际贸易公约》进行了超过840万立方米的木材、1.97亿株活植物和460万公斤的植物产品交易,分别包括53,765和74个物种。大多数物种在主要出口国和进口国之间进行贸易,特别是中国,美国和欧洲。随着时间的推移,木材的种类和体积的总多样性增加,而活的多样性下降,产品多样性和质量波动不确定。大多数物种在首次交易时没有被国际自然保护联盟(IUCN)红色名录评估,大量的木材和产品集中在受威胁的分类群中。由于对物种的了解甚少,因此有必要加强严格程度,确保CITES贸易的可持续发展。根据一项使用贸易数据和统计方法的分析,2000年至2020年,《濒危物种国际贸易公约》(Convention on International Trade in Endangered Species)所列的全球木材交易量超过840万立方米,活植物1.97亿株,植物产品460万公斤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increasing timber and declining live plant diversity and volumes in global trade from 2000 to 2020
Plants are a vast, lucrative portion of global wildlife trade and the most speciose clade listed under the Convention on International Trade in Endangered Species of Wild Fauna and Flora-CITES. Here we used the CITES Trade Database and >420,000 records between 2000 and 2020 and assessed the diversity and volume of wild-sourced CITES-listed plants across space and time. Between 2000–2020, over 8.4 million cubic metres of timber, 197 million individual live plants, and 4.6 million kilograms of plant products were traded under CITES, comprising 53, 765, and 74 species, respectively. Most species are traded between key exporter and importer nations, especially China, USA, and Europe. Total diversity of timber species and volumes increased over time, whereas live diversity declined, and product diversity and mass fluctuated uncertainly. Most species were not evaluated by the International Union for the Conservation of Nature (IUCN) Red List when first traded, with high volumes of timber and products concentrated among threatened taxa. The high prevalence of poorly understood species necessitates enhanced rigour in ensuring sustainable CITES trade. More than 8.4 million cubic metres of timber, 197 million live plants, and 4.6 million kilograms of plant products listed by the Convention on International Trade in Endangered Species were traded globally from 2000 to 2020, according to an analysis that uses trade data and a statistical approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
Kaolinite induces rapid authigenic mineralisation in unburied shrimps. Homo erectus adapted to steppe-desert climate extremes one million years ago. A transdisciplinary, comparative analysis reveals key risks from Arctic permafrost thaw. The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds. Revisiting the Last Ice Area projections from a high-resolution Global Earth System Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1