利用3 T和7 T时短回波时间脑1H-MRS改进代谢物定量的大分子模型:PRaMM模型。

IF 2.7 4区 医学 Q2 BIOPHYSICS NMR in Biomedicine Pub Date : 2025-01-01 DOI:10.1002/nbm.5299
Andrea Dell'Orco, Layla Tabea Riemann, Stephen L R Ellison, Semiha Aydin, Laura Göschel, Bernd Ittermann, Anna Tietze, Michael Scheel, Ariane Fillmer
{"title":"利用3 T和7 T时短回波时间脑1H-MRS改进代谢物定量的大分子模型:PRaMM模型。","authors":"Andrea Dell'Orco, Layla Tabea Riemann, Stephen L R Ellison, Semiha Aydin, Laura Göschel, Bernd Ittermann, Anna Tietze, Michael Scheel, Ariane Fillmer","doi":"10.1002/nbm.5299","DOIUrl":null,"url":null,"abstract":"<p><p>To improve reliability of metabolite quantification at both, 3 T and 7 T, we propose a novel parametrized macromolecules quantification model (PRaMM) for brain <sup>1</sup>H MRS, in which the ratios of macromolecule peak intensities are used as soft constraints. Full- and metabolite-nulled spectra were acquired in three different brain regions with different ratios of grey and white matter from six healthy volunteers, at both 3 T and 7 T. Metabolite-nulled spectra were used to identify highly correlated macromolecular signal contributions and estimate the ratios of their intensities. These ratios were then used as soft constraints in the proposed PRaMM model for quantification of full spectra. The PRaMM model was validated by comparison with a single-component macromolecule model and a macromolecule subtraction technique. Moreover, the influence of the PRaMM model on the repeatability and reproducibility compared with those other methods was investigated. The developed PRaMM model performed better than the two other approaches in all three investigated brain regions. Several estimates of metabolite concentration and their Cramér-Rao lower bounds were affected by the PRaMM model reproducibility, and repeatability of the achieved concentrations were tested by evaluating the method on a second repeated acquisitions dataset. Although the observed effects on both metrics were not significant, the fit quality metrics were improved for the PRaMM method (p ≤ 0.0001). Minimally detectable changes are in the range 0.5-1.9 mM, and the percentage coefficients of variations are lower than 10% for almost all the clinically relevant metabolites. Furthermore, potential overparameterization was ruled out. Here, the PRaMM model, a method for an improved quantification of metabolites, was developed, and a method to investigate the role of the MM background and its individual components from a clinical perspective is proposed.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 1","pages":"e5299"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658865/pdf/","citationCount":"0","resultStr":"{\"title\":\"Macromolecule Modelling for Improved Metabolite Quantification Using Short Echo Time Brain <sup>1</sup>H-MRS at 3 T and 7 T: The PRaMM Model.\",\"authors\":\"Andrea Dell'Orco, Layla Tabea Riemann, Stephen L R Ellison, Semiha Aydin, Laura Göschel, Bernd Ittermann, Anna Tietze, Michael Scheel, Ariane Fillmer\",\"doi\":\"10.1002/nbm.5299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To improve reliability of metabolite quantification at both, 3 T and 7 T, we propose a novel parametrized macromolecules quantification model (PRaMM) for brain <sup>1</sup>H MRS, in which the ratios of macromolecule peak intensities are used as soft constraints. Full- and metabolite-nulled spectra were acquired in three different brain regions with different ratios of grey and white matter from six healthy volunteers, at both 3 T and 7 T. Metabolite-nulled spectra were used to identify highly correlated macromolecular signal contributions and estimate the ratios of their intensities. These ratios were then used as soft constraints in the proposed PRaMM model for quantification of full spectra. The PRaMM model was validated by comparison with a single-component macromolecule model and a macromolecule subtraction technique. Moreover, the influence of the PRaMM model on the repeatability and reproducibility compared with those other methods was investigated. The developed PRaMM model performed better than the two other approaches in all three investigated brain regions. Several estimates of metabolite concentration and their Cramér-Rao lower bounds were affected by the PRaMM model reproducibility, and repeatability of the achieved concentrations were tested by evaluating the method on a second repeated acquisitions dataset. Although the observed effects on both metrics were not significant, the fit quality metrics were improved for the PRaMM method (p ≤ 0.0001). Minimally detectable changes are in the range 0.5-1.9 mM, and the percentage coefficients of variations are lower than 10% for almost all the clinically relevant metabolites. Furthermore, potential overparameterization was ruled out. Here, the PRaMM model, a method for an improved quantification of metabolites, was developed, and a method to investigate the role of the MM background and its individual components from a clinical perspective is proposed.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\"38 1\",\"pages\":\"e5299\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5299\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5299","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高在3t和7t时代谢物定量的可靠性,我们提出了一种新的脑1H MRS参数化大分子定量模型(PRaMM),其中大分子峰强度的比值作为软约束。在3 T和7 T时,从6名健康志愿者的大脑中获得了灰质和白质比例不同的三个不同区域的全谱和代谢物零谱。使用代谢物零谱来识别高度相关的大分子信号贡献并估计其强度的比率。然后将这些比率用作所提出的PRaMM模型的软约束,用于全光谱的量化。通过与单组分大分子模型和大分子减法技术的比较,验证了PRaMM模型的有效性。此外,还研究了PRaMM模型与其他方法相比对重现性和再现性的影响。开发的PRaMM模型在所有三个研究的大脑区域中都比其他两种方法表现更好。几种代谢物浓度估计值及其cram rs - rao下限受到PRaMM模型可重复性的影响,并通过在第二个重复采集数据集上评估该方法来测试所获得浓度的可重复性。虽然观察到的对两个指标的影响都不显著,但PRaMM方法的拟合质量指标得到了改善(p≤0.0001)。最小可检测到的变化在0.5-1.9 mM范围内,几乎所有临床相关代谢物的变化百分比系数都低于10%。此外,排除了潜在的过度参数化。本研究开发了一种改进的代谢物定量方法PRaMM模型,并提出了一种从临床角度研究MM背景及其单个成分作用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Macromolecule Modelling for Improved Metabolite Quantification Using Short Echo Time Brain 1H-MRS at 3 T and 7 T: The PRaMM Model.

To improve reliability of metabolite quantification at both, 3 T and 7 T, we propose a novel parametrized macromolecules quantification model (PRaMM) for brain 1H MRS, in which the ratios of macromolecule peak intensities are used as soft constraints. Full- and metabolite-nulled spectra were acquired in three different brain regions with different ratios of grey and white matter from six healthy volunteers, at both 3 T and 7 T. Metabolite-nulled spectra were used to identify highly correlated macromolecular signal contributions and estimate the ratios of their intensities. These ratios were then used as soft constraints in the proposed PRaMM model for quantification of full spectra. The PRaMM model was validated by comparison with a single-component macromolecule model and a macromolecule subtraction technique. Moreover, the influence of the PRaMM model on the repeatability and reproducibility compared with those other methods was investigated. The developed PRaMM model performed better than the two other approaches in all three investigated brain regions. Several estimates of metabolite concentration and their Cramér-Rao lower bounds were affected by the PRaMM model reproducibility, and repeatability of the achieved concentrations were tested by evaluating the method on a second repeated acquisitions dataset. Although the observed effects on both metrics were not significant, the fit quality metrics were improved for the PRaMM method (p ≤ 0.0001). Minimally detectable changes are in the range 0.5-1.9 mM, and the percentage coefficients of variations are lower than 10% for almost all the clinically relevant metabolites. Furthermore, potential overparameterization was ruled out. Here, the PRaMM model, a method for an improved quantification of metabolites, was developed, and a method to investigate the role of the MM background and its individual components from a clinical perspective is proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
期刊最新文献
Determination of Tissue Potassium and Sodium Concentrations in Dystrophic Skeletal Muscle Tissue Using Combined Potassium (39K) and Sodium (23Na) MRI at 7 T. Correction to "B0 Magnetic Field Conditions in the Human Heart at 3 T Across One Thousand Subjects: A Numerical Simulation Study". Deuterium MRS for In Vivo Measurement of Lipogenesis in the Liver. Improved Fetal Magnetic Resonance Imaging Using a Flexible Metasurface. Magnetic Resonance Elastography of Upper Trapezius Muscle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1