基于优化的图像重建全线性化 ADMM 算法。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2024-12-18 DOI:10.3233/XST-240029
Zhiwei Qiao, Gage Redler, Boris Epel, Howard Halpern
{"title":"基于优化的图像重建全线性化 ADMM 算法。","authors":"Zhiwei Qiao, Gage Redler, Boris Epel, Howard Halpern","doi":"10.3233/XST-240029","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Optimization based image reconstruction algorithm is an advanced algorithm in medical imaging. However, the corresponding solving algorithm is challenging because the model is usually large-scale and non-smooth. This work aims to devise a simple and convergent solver for optimization model.</p><p><strong>Methods: </strong>The alternating direction method of multipliers (ADMM) algorithm is a simple and effective solver of the optimization model. However, there always exists a sub-problem that has not close-form solution. One may use gradient descent algorithm to solve this sub-problem, but the step-size selection via line search is time-consuming. Or, one may use fast Fourier transform (FFT) to get a close-form solution if the sparse transform matrix is of special structure. In this work, we propose a fully linearized ADMM (FL-ADMM) algorithm that avoids line search to determine step-size and applies to sparse transform of any structure.</p><p><strong>Results: </strong>We derive the FL-ADMM algorithm instances for three total variation (TV) models in 2D computed tomography (CT). Further, we validate and evaluate one FL-ADMM algorithm and explore how two important factors impact convergence rate. These studies show that the FL-ADMM algorithm may accurately solve the optimization model.</p><p><strong>Conclusion: </strong>The FL-ADMM algorithm is a simple, effective, convergent and universal solver of optimization model in image reconstruction. Compared to the standard ADMM algorithm, the new algorithm does not need time-consuming step-size line-search or special demand to sparse transform. It is a rapid prototyping tool for optimization based image reconstruction.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fully linearized ADMM algorithm for optimization based image reconstruction.\",\"authors\":\"Zhiwei Qiao, Gage Redler, Boris Epel, Howard Halpern\",\"doi\":\"10.3233/XST-240029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Optimization based image reconstruction algorithm is an advanced algorithm in medical imaging. However, the corresponding solving algorithm is challenging because the model is usually large-scale and non-smooth. This work aims to devise a simple and convergent solver for optimization model.</p><p><strong>Methods: </strong>The alternating direction method of multipliers (ADMM) algorithm is a simple and effective solver of the optimization model. However, there always exists a sub-problem that has not close-form solution. One may use gradient descent algorithm to solve this sub-problem, but the step-size selection via line search is time-consuming. Or, one may use fast Fourier transform (FFT) to get a close-form solution if the sparse transform matrix is of special structure. In this work, we propose a fully linearized ADMM (FL-ADMM) algorithm that avoids line search to determine step-size and applies to sparse transform of any structure.</p><p><strong>Results: </strong>We derive the FL-ADMM algorithm instances for three total variation (TV) models in 2D computed tomography (CT). Further, we validate and evaluate one FL-ADMM algorithm and explore how two important factors impact convergence rate. These studies show that the FL-ADMM algorithm may accurately solve the optimization model.</p><p><strong>Conclusion: </strong>The FL-ADMM algorithm is a simple, effective, convergent and universal solver of optimization model in image reconstruction. Compared to the standard ADMM algorithm, the new algorithm does not need time-consuming step-size line-search or special demand to sparse transform. It is a rapid prototyping tool for optimization based image reconstruction.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-240029\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-240029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fully linearized ADMM algorithm for optimization based image reconstruction.

Background and objective: Optimization based image reconstruction algorithm is an advanced algorithm in medical imaging. However, the corresponding solving algorithm is challenging because the model is usually large-scale and non-smooth. This work aims to devise a simple and convergent solver for optimization model.

Methods: The alternating direction method of multipliers (ADMM) algorithm is a simple and effective solver of the optimization model. However, there always exists a sub-problem that has not close-form solution. One may use gradient descent algorithm to solve this sub-problem, but the step-size selection via line search is time-consuming. Or, one may use fast Fourier transform (FFT) to get a close-form solution if the sparse transform matrix is of special structure. In this work, we propose a fully linearized ADMM (FL-ADMM) algorithm that avoids line search to determine step-size and applies to sparse transform of any structure.

Results: We derive the FL-ADMM algorithm instances for three total variation (TV) models in 2D computed tomography (CT). Further, we validate and evaluate one FL-ADMM algorithm and explore how two important factors impact convergence rate. These studies show that the FL-ADMM algorithm may accurately solve the optimization model.

Conclusion: The FL-ADMM algorithm is a simple, effective, convergent and universal solver of optimization model in image reconstruction. Compared to the standard ADMM algorithm, the new algorithm does not need time-consuming step-size line-search or special demand to sparse transform. It is a rapid prototyping tool for optimization based image reconstruction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Industrial digital radiographic image denoising based on improved KBNet. Research on the effectiveness of multi-view slice correction strategy based on deep learning in high pitch helical CT reconstruction. A fully linearized ADMM algorithm for optimization based image reconstruction. A reconstruction method for ptychography based on residual dense network. Can AI generate diagnostic reports for radiologist approval on CXR images? A multi-reader and multi-case observer performance study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1