长期水稻-小龙虾共培养增加了植物木质素,但没有增加微生物坏死团对土壤有机碳的贡献

Yao Guo, Quanyi Hu, Tianqi Liu, Yunfeng Du, Chengfang Li, Xuelin Zhang, Juan Liu, Cougui Cao
{"title":"长期水稻-小龙虾共培养增加了植物木质素,但没有增加微生物坏死团对土壤有机碳的贡献","authors":"Yao Guo, Quanyi Hu, Tianqi Liu, Yunfeng Du, Chengfang Li, Xuelin Zhang, Juan Liu, Cougui Cao","doi":"10.1016/j.still.2024.106424","DOIUrl":null,"url":null,"abstract":"Rice–crayfish coculture (RC) has emerged as a transformative agricultural practice in China, significantly influencing soil microorganisms and enhancing soil organic carbon (SOC) accumulation. However, the contribution of plant residues and microbial necromass to the increased SOC within RC systems remains uncertain. This study aimed to investigate phospholipid fatty acids (PLFAs), microbial necromass C (MNC, with amino sugars as biomarkers), plant-derived C (VSC, with lignin phenols as biomarkers) levels, along with soil properties across conventional rice monoculture (RM) and RC systems of 5-, 10-, and 15-yr durations (RC5, RC10, and RC15, respectively). The results showed that long-term RC fields exhibited stronger aggregation, higher soil nutrient levels, organically complexed Fe oxides (Fe<ce:inf loc=\"post\">p</ce:inf>), and lower bulk density and oxidation–reduction potential than those with RM. The SOC levels were significantly higher in RC10 and RC15 than in RM, by 31.8 % and 37.2 %, respectively. Moreover, RC significantly reduced the levels of bacterial (25.3–35.4 %) and fungal (19.5–34.7 %) PLFAs compared with RM, with RC10 exhibiting the lowest levels. With RC duration increasing to 10–15 years, MNC and VSC were respectively higher by 12.4–25.3 % and 48.8–72.4 % than those in RM. Specifically, fungal necromass C, as well as vanillyl- and syringyl-type phenols, showed the most pronounced enhancements. Concurrently, the contribution of VSC to SOC (12.4–25.3 %) significantly increased in the 10 −15-yr RC period compared with RM, whereas MNC decreased proportionally (17.5–18.5 %). SOC and Fe<ce:inf loc=\"post\">p</ce:inf> were the primary factors regulating the contribution of MNC to SOC, whereas the contribution of VSC to SOC was mainly influenced by soil aggregation. Thus, long-term RC improved soil C sequestration primarily by increasing the contribution of plant-derived C rather than that of microbe-derived C. However, the findings of this study indicated that long-term RC might limit microbial biomass, thereby raising concerns about the long-term sustainability of microbial communities in these systems.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term rice–crayfish coculture increases plant lignin but not microbial necromass contribution to soil organic carbon\",\"authors\":\"Yao Guo, Quanyi Hu, Tianqi Liu, Yunfeng Du, Chengfang Li, Xuelin Zhang, Juan Liu, Cougui Cao\",\"doi\":\"10.1016/j.still.2024.106424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rice–crayfish coculture (RC) has emerged as a transformative agricultural practice in China, significantly influencing soil microorganisms and enhancing soil organic carbon (SOC) accumulation. However, the contribution of plant residues and microbial necromass to the increased SOC within RC systems remains uncertain. This study aimed to investigate phospholipid fatty acids (PLFAs), microbial necromass C (MNC, with amino sugars as biomarkers), plant-derived C (VSC, with lignin phenols as biomarkers) levels, along with soil properties across conventional rice monoculture (RM) and RC systems of 5-, 10-, and 15-yr durations (RC5, RC10, and RC15, respectively). The results showed that long-term RC fields exhibited stronger aggregation, higher soil nutrient levels, organically complexed Fe oxides (Fe<ce:inf loc=\\\"post\\\">p</ce:inf>), and lower bulk density and oxidation–reduction potential than those with RM. The SOC levels were significantly higher in RC10 and RC15 than in RM, by 31.8 % and 37.2 %, respectively. Moreover, RC significantly reduced the levels of bacterial (25.3–35.4 %) and fungal (19.5–34.7 %) PLFAs compared with RM, with RC10 exhibiting the lowest levels. With RC duration increasing to 10–15 years, MNC and VSC were respectively higher by 12.4–25.3 % and 48.8–72.4 % than those in RM. Specifically, fungal necromass C, as well as vanillyl- and syringyl-type phenols, showed the most pronounced enhancements. Concurrently, the contribution of VSC to SOC (12.4–25.3 %) significantly increased in the 10 −15-yr RC period compared with RM, whereas MNC decreased proportionally (17.5–18.5 %). SOC and Fe<ce:inf loc=\\\"post\\\">p</ce:inf> were the primary factors regulating the contribution of MNC to SOC, whereas the contribution of VSC to SOC was mainly influenced by soil aggregation. Thus, long-term RC improved soil C sequestration primarily by increasing the contribution of plant-derived C rather than that of microbe-derived C. However, the findings of this study indicated that long-term RC might limit microbial biomass, thereby raising concerns about the long-term sustainability of microbial communities in these systems.\",\"PeriodicalId\":501007,\"journal\":{\"name\":\"Soil and Tillage Research\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil and Tillage Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.still.2024.106424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Tillage Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.still.2024.106424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水稻-小龙虾共养(RC)已成为中国一种变革性的农业实践,显著影响了土壤微生物,提高了土壤有机碳(SOC)的积累。然而,植物残体和微生物坏死块对土壤有机碳增加的贡献仍不确定。本研究旨在研究5年、10年和15年(分别为RC5、RC10和RC15)的传统水稻单栽培(RM)和RC系统中磷脂脂肪酸(PLFAs)、微生物坏死团C (MNC,以氨基糖为生物标志物)、植物源性C (VSC,以木质素酚为生物标志物)水平以及土壤特性。结果表明,长期施用RC的土壤团聚性较强,土壤养分水平较高,铁氧化物有机络合,容重和氧化还原电位较低。RC10和RC15的SOC水平显著高于RM,分别提高了31.8% %和37.2% %。此外,与RM相比,RC显著降低了细菌PLFAs(25.3-35.4 %)和真菌PLFAs(19.5-34.7 %)的水平,其中RC10的水平最低。随着RC龄期的增加,MNC和VSC分别比RM高12.4 ~ 25.3 %和48.8 ~ 72.4 %。具体来说,真菌坏死团C,以及香草基和丁香基型酚,表现出最明显的增强。与此同时,与RM相比,VSC对SOC的贡献在10 −15年的RC期间显著增加(12.4-25.3 %),而MNC则呈比例下降(17.5-18.5 %)。土壤有机碳和Fep是影响土壤有机碳贡献的主要因子,而VSC对土壤有机碳的贡献主要受土壤团聚体的影响。因此,长期RC主要通过增加植物来源的C而不是微生物来源的C来改善土壤碳固存。然而,本研究的结果表明,长期RC可能会限制微生物生物量,从而引起对这些系统中微生物群落长期可持续性的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-term rice–crayfish coculture increases plant lignin but not microbial necromass contribution to soil organic carbon
Rice–crayfish coculture (RC) has emerged as a transformative agricultural practice in China, significantly influencing soil microorganisms and enhancing soil organic carbon (SOC) accumulation. However, the contribution of plant residues and microbial necromass to the increased SOC within RC systems remains uncertain. This study aimed to investigate phospholipid fatty acids (PLFAs), microbial necromass C (MNC, with amino sugars as biomarkers), plant-derived C (VSC, with lignin phenols as biomarkers) levels, along with soil properties across conventional rice monoculture (RM) and RC systems of 5-, 10-, and 15-yr durations (RC5, RC10, and RC15, respectively). The results showed that long-term RC fields exhibited stronger aggregation, higher soil nutrient levels, organically complexed Fe oxides (Fep), and lower bulk density and oxidation–reduction potential than those with RM. The SOC levels were significantly higher in RC10 and RC15 than in RM, by 31.8 % and 37.2 %, respectively. Moreover, RC significantly reduced the levels of bacterial (25.3–35.4 %) and fungal (19.5–34.7 %) PLFAs compared with RM, with RC10 exhibiting the lowest levels. With RC duration increasing to 10–15 years, MNC and VSC were respectively higher by 12.4–25.3 % and 48.8–72.4 % than those in RM. Specifically, fungal necromass C, as well as vanillyl- and syringyl-type phenols, showed the most pronounced enhancements. Concurrently, the contribution of VSC to SOC (12.4–25.3 %) significantly increased in the 10 −15-yr RC period compared with RM, whereas MNC decreased proportionally (17.5–18.5 %). SOC and Fep were the primary factors regulating the contribution of MNC to SOC, whereas the contribution of VSC to SOC was mainly influenced by soil aggregation. Thus, long-term RC improved soil C sequestration primarily by increasing the contribution of plant-derived C rather than that of microbe-derived C. However, the findings of this study indicated that long-term RC might limit microbial biomass, thereby raising concerns about the long-term sustainability of microbial communities in these systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conservation agriculture boosts topsoil organic matter by restoring free lipids and lignin phenols biomarkers in distinct fractions Mechanisms of cover crop-derived carbon sequestration in winter wheat fields: Insights from 13C labeling Nitrogen-rich roots regulate microbial- and plant-derived carbon in alkali-saline soil under land-use conversions in the Songnen Plain Field traffic loads on a silty farm site cause shifting and narrowing of soil pore size distribution Calcium lactate as a soil amendment: Mechanistic insights into its effect on salinity, alkalinity, and aggregation in saline-alkaline soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1