增强低聚噻吩荧光性能的呋喃取代和环融合策略

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2024-12-20 DOI:10.1002/qua.27528
Yaoxuan Zhang, Xiping Zhu, Shaohui Zheng
{"title":"增强低聚噻吩荧光性能的呋喃取代和环融合策略","authors":"Yaoxuan Zhang,&nbsp;Xiping Zhu,&nbsp;Shaohui Zheng","doi":"10.1002/qua.27528","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oligothiophenes have attracted a lot of attention due to their excellent photoelectric properties. However, the effects of ring fusion and furan substitution on the optoelectrical properties of oligothiophenes are still unclear. In this study, based on popular pentathiophene, eight molecules including three ring-fused and five furan-substituted derivatives are systematically designed, and their frontier molecular orbitals, dipole moments, planarity, exciton binding energy (<i>E</i><sub>b</sub>), singlet-triplet energy differences, and fluorescence quantum yields are calculated. The computed data demonstrate that full-ring fusion and two- and more-furan substitutions can greatly enhance the fluorescence quantum yields. Five potential molecules with about 100% of fluorescence quantum yield, i.e., TTTTT, SOSOS, OSOSO, SOOOS, and OOOOO, are screened. The results show that to obtain high fluorescence quantum yield, high <i>E</i><sub>b</sub> is required, and the flexible torsional displacement during the excitation from ground to the first excited state should be removed as much as possible. This work sheds some light on the future design of high-performance oligothiophene-based fluorescent materials.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Furan Substitution and Ring Fusion Strategies for Enhancing the Fluorescence Performance of Oligothiophene\",\"authors\":\"Yaoxuan Zhang,&nbsp;Xiping Zhu,&nbsp;Shaohui Zheng\",\"doi\":\"10.1002/qua.27528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Oligothiophenes have attracted a lot of attention due to their excellent photoelectric properties. However, the effects of ring fusion and furan substitution on the optoelectrical properties of oligothiophenes are still unclear. In this study, based on popular pentathiophene, eight molecules including three ring-fused and five furan-substituted derivatives are systematically designed, and their frontier molecular orbitals, dipole moments, planarity, exciton binding energy (<i>E</i><sub>b</sub>), singlet-triplet energy differences, and fluorescence quantum yields are calculated. The computed data demonstrate that full-ring fusion and two- and more-furan substitutions can greatly enhance the fluorescence quantum yields. Five potential molecules with about 100% of fluorescence quantum yield, i.e., TTTTT, SOSOS, OSOSO, SOOOS, and OOOOO, are screened. The results show that to obtain high fluorescence quantum yield, high <i>E</i><sub>b</sub> is required, and the flexible torsional displacement during the excitation from ground to the first excited state should be removed as much as possible. This work sheds some light on the future design of high-performance oligothiophene-based fluorescent materials.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27528\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27528","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

低聚噻吩因其优异的光电性能而受到广泛关注。然而,环融合和呋喃取代对低聚噻吩光电性能的影响尚不清楚。本研究以常见的五噻吩为基础,系统设计了包括3个环融合衍生物和5个呋喃取代衍生物在内的8个分子,并计算了它们的前沿分子轨道、偶极矩、平面度、激子结合能(Eb)、单重态-三重态能差和荧光量子产率。计算数据表明,全环融合和两个或多个呋喃取代可以大大提高荧光量子产率。筛选了5个荧光量子产率约为100%的潜在分子TTTTT、SOSOS、OSOSO、SOOOS和OOOOO。结果表明,为了获得高荧光量子产率,需要高Eb,并应尽可能消除从地激发到第一激发态的柔性扭转位移。这项工作为未来高性能低聚噻吩基荧光材料的设计提供了一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Furan Substitution and Ring Fusion Strategies for Enhancing the Fluorescence Performance of Oligothiophene

Oligothiophenes have attracted a lot of attention due to their excellent photoelectric properties. However, the effects of ring fusion and furan substitution on the optoelectrical properties of oligothiophenes are still unclear. In this study, based on popular pentathiophene, eight molecules including three ring-fused and five furan-substituted derivatives are systematically designed, and their frontier molecular orbitals, dipole moments, planarity, exciton binding energy (Eb), singlet-triplet energy differences, and fluorescence quantum yields are calculated. The computed data demonstrate that full-ring fusion and two- and more-furan substitutions can greatly enhance the fluorescence quantum yields. Five potential molecules with about 100% of fluorescence quantum yield, i.e., TTTTT, SOSOS, OSOSO, SOOOS, and OOOOO, are screened. The results show that to obtain high fluorescence quantum yield, high Eb is required, and the flexible torsional displacement during the excitation from ground to the first excited state should be removed as much as possible. This work sheds some light on the future design of high-performance oligothiophene-based fluorescent materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Issue Information Exploring Graphitic Carbon Nitride as Novel Drug Delivery System for Hesperetin (Anticancer Drug): Insights From DFT Calculations and Molecular Dynamics Simulations Sustainable Synthesis, DFT, Docking and In Vitro Evaluation of 6-Mercaptopurine Syringic Acid Cocrystal: A Potent Drug for Breast Cancer Therapy Theoretical Insights of the Non-Rigid Behavior of Benzophenone by Franck-Condon Factors Approach DFT Investigations of Non-Toxic Perovskites RbZnX3 (X = F, Cl, and Br): Analyzing the Structural, Electrical, Optical, Mechanical, and Thermodynamic Properties for Suitable Optoelectronic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1