Andrés Córdova, Sebastián Catalán, Vinka Carrasco, Fabiane O Farias, Julia Trentin, Jessica López, Fernando Salazar, Cassamo U Mussagy
{"title":"超声辅助提取花青素的生物基溶剂的可持续性评估,以提高葡萄渣从酿酒过程中得到的赤霞珠。","authors":"Andrés Córdova, Sebastián Catalán, Vinka Carrasco, Fabiane O Farias, Julia Trentin, Jessica López, Fernando Salazar, Cassamo U Mussagy","doi":"10.1016/j.ultsonch.2024.107201","DOIUrl":null,"url":null,"abstract":"<p><p>This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.9 and 13.9 W/cm<sup>2</sup>). Samples were taken from 0 to 40 min. Ultrasound induced a fast extraction of anthocyanins: a plateau was reached at 5 min and the continuation of the sonication only provoked a marginal increase which is transferred in lower Productivity (Pr) rand higher energy consumptions. The COSMO-SAC model validated solute-solvent interactions, providing robust predictive insights where ethanol showed the highest anthocyanin extraction and productivities (1.094 kg/hL). However, propylene-glycol showed the highest eco-scale scores (∼ 80) within the range defined as \"Excellent\" and antioxidant capacity (2758.34 ± 6.26 μmol TE/g DM) regardless of the UI, and with very low energy consumption when the extraction was performed at 3.9 W/cm<sup>2</sup> and SLR of 1:10 g/mL. These results show that integration of UAE and bio-based solvents presented a sustainable and efficient method for valorizing wine making by-products, with significant improvements with respect to the conventional extraction, thus promoting eco-friendly practices for the food industry, and supporting the circular economy.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107201"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustainable assessment of ultrasound-assisted extraction of anthocyanins with bio-based solvents for upgrading grape pomace Cabernet Sauvignon derived from a winemaking process.\",\"authors\":\"Andrés Córdova, Sebastián Catalán, Vinka Carrasco, Fabiane O Farias, Julia Trentin, Jessica López, Fernando Salazar, Cassamo U Mussagy\",\"doi\":\"10.1016/j.ultsonch.2024.107201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.9 and 13.9 W/cm<sup>2</sup>). Samples were taken from 0 to 40 min. Ultrasound induced a fast extraction of anthocyanins: a plateau was reached at 5 min and the continuation of the sonication only provoked a marginal increase which is transferred in lower Productivity (Pr) rand higher energy consumptions. The COSMO-SAC model validated solute-solvent interactions, providing robust predictive insights where ethanol showed the highest anthocyanin extraction and productivities (1.094 kg/hL). However, propylene-glycol showed the highest eco-scale scores (∼ 80) within the range defined as \\\"Excellent\\\" and antioxidant capacity (2758.34 ± 6.26 μmol TE/g DM) regardless of the UI, and with very low energy consumption when the extraction was performed at 3.9 W/cm<sup>2</sup> and SLR of 1:10 g/mL. These results show that integration of UAE and bio-based solvents presented a sustainable and efficient method for valorizing wine making by-products, with significant improvements with respect to the conventional extraction, thus promoting eco-friendly practices for the food industry, and supporting the circular economy.</p>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"112 \",\"pages\":\"107201\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ultsonch.2024.107201\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2024.107201","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Sustainable assessment of ultrasound-assisted extraction of anthocyanins with bio-based solvents for upgrading grape pomace Cabernet Sauvignon derived from a winemaking process.
This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.9 and 13.9 W/cm2). Samples were taken from 0 to 40 min. Ultrasound induced a fast extraction of anthocyanins: a plateau was reached at 5 min and the continuation of the sonication only provoked a marginal increase which is transferred in lower Productivity (Pr) rand higher energy consumptions. The COSMO-SAC model validated solute-solvent interactions, providing robust predictive insights where ethanol showed the highest anthocyanin extraction and productivities (1.094 kg/hL). However, propylene-glycol showed the highest eco-scale scores (∼ 80) within the range defined as "Excellent" and antioxidant capacity (2758.34 ± 6.26 μmol TE/g DM) regardless of the UI, and with very low energy consumption when the extraction was performed at 3.9 W/cm2 and SLR of 1:10 g/mL. These results show that integration of UAE and bio-based solvents presented a sustainable and efficient method for valorizing wine making by-products, with significant improvements with respect to the conventional extraction, thus promoting eco-friendly practices for the food industry, and supporting the circular economy.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.