进一步证明双等位基因NAV3变异与隐性神经发育障碍、畸形、发育迟缓、智力残疾和行为异常相关。

IF 3.8 2区 生物学 Q2 GENETICS & HEREDITY Human Genetics Pub Date : 2025-01-01 Epub Date: 2024-12-21 DOI:10.1007/s00439-024-02718-6
Naseebullah Kakar, Selinda Mascarenhas, Asmat Ali, Azmatullah, Syed M Ijlal Haider, Vaishnavi Ashok Badiger, Mobina Shadman Ghofrani, Nathalie Kruse, Sohana Nadeem Hashmi, Jelena Pozojevic, Saranya Balachandran, Mathias Toft, Sajid Malik, Kristian Händler, Ambrin Fatima, Zafar Iqbal, Anju Shukla, Malte Spielmann, Periyasamy Radhakrishnan
{"title":"进一步证明双等位基因NAV3变异与隐性神经发育障碍、畸形、发育迟缓、智力残疾和行为异常相关。","authors":"Naseebullah Kakar, Selinda Mascarenhas, Asmat Ali, Azmatullah, Syed M Ijlal Haider, Vaishnavi Ashok Badiger, Mobina Shadman Ghofrani, Nathalie Kruse, Sohana Nadeem Hashmi, Jelena Pozojevic, Saranya Balachandran, Mathias Toft, Sajid Malik, Kristian Händler, Ambrin Fatima, Zafar Iqbal, Anju Shukla, Malte Spielmann, Periyasamy Radhakrishnan","doi":"10.1007/s00439-024-02718-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied. Recently, five bi-allelic and three mono-allelic variants in NAV3 were reported in 12 individuals from eight unrelated families with neurodevelopmental disorder (NDD). Here, we report five patients from three unrelated consanguineous families segregating autosomal recessive NDD. Patients have symptoms of dysmorphism, intellectual disability, developmental delay, and behavioral abnormalities. Exome sequencing (ES) was performed on two affected individuals from one large family, and one affected individual from each of the other two families. ES revealed two homozygous nonsense c.6325C > T; p.(Gln2109Ter) and c.6577C > T; p.(Arg2193Ter) and a homozygous splice site (c.243 + 1G > T) variants in the NAV3 (NM_001024383.2). Analysis of single-cell sequencing datasets from embryonic and young adult human brains revealed that NAV3 is highly expressed in the excitatory neurons, inhibitory neurons, and microglia, consistent with its role in neurodevelopment. In conclusion, in this study, we further validate biallelic protein truncating variants in NAV3 as a cause of NDD, expanding the spectrum of pathogenic variants in this newly discovered NDD gene.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"55-65"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754320/pdf/","citationCount":"0","resultStr":"{\"title\":\"Further evidence of biallelic NAV3 variants associated with recessive neurodevelopmental disorder with dysmorphism, developmental delay, intellectual disability, and behavioral abnormalities.\",\"authors\":\"Naseebullah Kakar, Selinda Mascarenhas, Asmat Ali, Azmatullah, Syed M Ijlal Haider, Vaishnavi Ashok Badiger, Mobina Shadman Ghofrani, Nathalie Kruse, Sohana Nadeem Hashmi, Jelena Pozojevic, Saranya Balachandran, Mathias Toft, Sajid Malik, Kristian Händler, Ambrin Fatima, Zafar Iqbal, Anju Shukla, Malte Spielmann, Periyasamy Radhakrishnan\",\"doi\":\"10.1007/s00439-024-02718-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied. Recently, five bi-allelic and three mono-allelic variants in NAV3 were reported in 12 individuals from eight unrelated families with neurodevelopmental disorder (NDD). Here, we report five patients from three unrelated consanguineous families segregating autosomal recessive NDD. Patients have symptoms of dysmorphism, intellectual disability, developmental delay, and behavioral abnormalities. Exome sequencing (ES) was performed on two affected individuals from one large family, and one affected individual from each of the other two families. ES revealed two homozygous nonsense c.6325C > T; p.(Gln2109Ter) and c.6577C > T; p.(Arg2193Ter) and a homozygous splice site (c.243 + 1G > T) variants in the NAV3 (NM_001024383.2). Analysis of single-cell sequencing datasets from embryonic and young adult human brains revealed that NAV3 is highly expressed in the excitatory neurons, inhibitory neurons, and microglia, consistent with its role in neurodevelopment. In conclusion, in this study, we further validate biallelic protein truncating variants in NAV3 as a cause of NDD, expanding the spectrum of pathogenic variants in this newly discovered NDD gene.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"55-65\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754320/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-024-02718-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02718-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

神经元导航员(NAVs)是一种细胞骨架相关蛋白,因其在神经发育所需的轴突引导、神经元迁移和神经突生长中的作用而闻名。神经元导航仪3 (Neuron navigator 3, NAV3)是胚胎和成人大脑中高表达的三个NAV蛋白之一。然而,NAV3基因在人类疾病中的作用尚未得到充分研究。最近,在来自8个无血缘关系的神经发育障碍(NDD)家族的12例患者中报道了NAV3的5个双等位基因和3个单等位基因变异。在这里,我们报告5例患者从三个不相关的近亲家庭分离常染色体隐性NDD。患者有畸形、智力残疾、发育迟缓和行为异常等症状。外显子组测序(ES)对来自一个大家庭的两名受影响个体和来自其他两个家庭的一名受影响个体进行。ES显示两个纯合无义c.6325C . > T;p.(Gln2109Ter)和c.6577C > T;p.(Arg2193Ter)和NAV3 (NM_001024383.2)的纯合剪接位点(c.243 + 1G > T)变异。对胚胎和年轻成人大脑单细胞测序数据集的分析显示,NAV3在兴奋性神经元、抑制性神经元和小胶质细胞中高度表达,与其在神经发育中的作用一致。总之,在本研究中,我们进一步验证了NAV3的双等位蛋白截断变异是NDD的原因,扩大了新发现的NDD基因的致病变异谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Further evidence of biallelic NAV3 variants associated with recessive neurodevelopmental disorder with dysmorphism, developmental delay, intellectual disability, and behavioral abnormalities.

Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied. Recently, five bi-allelic and three mono-allelic variants in NAV3 were reported in 12 individuals from eight unrelated families with neurodevelopmental disorder (NDD). Here, we report five patients from three unrelated consanguineous families segregating autosomal recessive NDD. Patients have symptoms of dysmorphism, intellectual disability, developmental delay, and behavioral abnormalities. Exome sequencing (ES) was performed on two affected individuals from one large family, and one affected individual from each of the other two families. ES revealed two homozygous nonsense c.6325C > T; p.(Gln2109Ter) and c.6577C > T; p.(Arg2193Ter) and a homozygous splice site (c.243 + 1G > T) variants in the NAV3 (NM_001024383.2). Analysis of single-cell sequencing datasets from embryonic and young adult human brains revealed that NAV3 is highly expressed in the excitatory neurons, inhibitory neurons, and microglia, consistent with its role in neurodevelopment. In conclusion, in this study, we further validate biallelic protein truncating variants in NAV3 as a cause of NDD, expanding the spectrum of pathogenic variants in this newly discovered NDD gene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Genetics
Human Genetics 生物-遗传学
CiteScore
10.80
自引率
3.80%
发文量
94
审稿时长
1 months
期刊介绍: Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology. Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted. The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.
期刊最新文献
Evaluating predictors of kinase activity of STK11 variants identified in primary human non-small cell lung cancers. Unilateral, bilateral symmetric or asymmetric isolated hearing loss in patients with heterozygous KITLG variants. Global dysregulation of circular RNAs in frontal cortex and whole blood from DM1 and DM2. An augmented transformer model trained on protein family specific variant data leads to improved prediction of variants of uncertain significance. Conventional and genetic association between migraine and stroke with druggable genome-wide Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1