细菌对氨基糖苷类抗生素修饰酶的抗性基因:从废水中鉴定和检测。

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY Gene Pub Date : 2024-12-19 DOI:10.1016/j.gene.2024.149181
Abhinandan Patnaik, Sharad Kumar Rai, Ram Kumar Dhaked
{"title":"细菌对氨基糖苷类抗生素修饰酶的抗性基因:从废水中鉴定和检测。","authors":"Abhinandan Patnaik, Sharad Kumar Rai, Ram Kumar Dhaked","doi":"10.1016/j.gene.2024.149181","DOIUrl":null,"url":null,"abstract":"<p><p>Global reporting of antibiotic resistant bacteria (ARB) bearing antibiotic resistance genes (ARGs) have increased in the past decade. Sewage systems act as breeding grounds for these pathogens. Dumping of untreated sewage effluent in river water systems have aided in their dissemination and spread. The molecular pathways circumventing antibiotics through ARGs is rising owing to overuse of these drugs. Use of aminoglycoside spectrum drugs has been increased exponentially. The genes providing resistance to these antibiotics are transferred through extra-chromosomal circular DNA elements. Polluted water bodies are ground zero for exchange of these genetic factors. Through literature survey, we shortlisted some clinically relevant genes which provide resistance against aminoglycosides and hold immense importance in present scenario. Initial screening for these genes was done on water samples collected from Swarna Rekha River channel in Gwalior District of Madhya Pradesh, India. A total of five identified genes were sequence verified using conventional PCR followed by targeted sequencing. Further, diagnostic platforms were designed for two reoccurring genes npmA & sat4<sup>A</sup> and their presence evaluated from wastewater samples collected from urban establishments of the district. Prevalence of these genes in sewage samples validated the broad impact of urban waste burden in polluting local water bodies. We were able to identify some indispensable and high risk aminoglycoside resistance providing genes, unreported in Indian context. This approach towards ARG screening could support risk assessment of future antibiotic resistance associated public health hazards.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149181"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genes encoding antibiotic modifying enzymes conferring resistance against aminoglycosides in bacteria: Their identification and detection from wastewater.\",\"authors\":\"Abhinandan Patnaik, Sharad Kumar Rai, Ram Kumar Dhaked\",\"doi\":\"10.1016/j.gene.2024.149181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global reporting of antibiotic resistant bacteria (ARB) bearing antibiotic resistance genes (ARGs) have increased in the past decade. Sewage systems act as breeding grounds for these pathogens. Dumping of untreated sewage effluent in river water systems have aided in their dissemination and spread. The molecular pathways circumventing antibiotics through ARGs is rising owing to overuse of these drugs. Use of aminoglycoside spectrum drugs has been increased exponentially. The genes providing resistance to these antibiotics are transferred through extra-chromosomal circular DNA elements. Polluted water bodies are ground zero for exchange of these genetic factors. Through literature survey, we shortlisted some clinically relevant genes which provide resistance against aminoglycosides and hold immense importance in present scenario. Initial screening for these genes was done on water samples collected from Swarna Rekha River channel in Gwalior District of Madhya Pradesh, India. A total of five identified genes were sequence verified using conventional PCR followed by targeted sequencing. Further, diagnostic platforms were designed for two reoccurring genes npmA & sat4<sup>A</sup> and their presence evaluated from wastewater samples collected from urban establishments of the district. Prevalence of these genes in sewage samples validated the broad impact of urban waste burden in polluting local water bodies. We were able to identify some indispensable and high risk aminoglycoside resistance providing genes, unreported in Indian context. This approach towards ARG screening could support risk assessment of future antibiotic resistance associated public health hazards.</p>\",\"PeriodicalId\":12499,\"journal\":{\"name\":\"Gene\",\"volume\":\" \",\"pages\":\"149181\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gene.2024.149181\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149181","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,全球关于携带抗生素耐药基因(ARGs)的抗生素耐药菌(ARB)的报道有所增加。污水系统是这些病原体的滋生地。向河流系统倾倒未经处理的污水,助长了疾病的传播和蔓延。由于这些药物的过度使用,通过ARGs绕过抗生素的分子途径正在增加。氨基糖苷类药物的使用呈指数增长。提供这些抗生素抗性的基因通过染色体外环状DNA元件转移。受污染的水体是这些遗传因素交换的起点。通过文献综述,我们筛选出了一些临床相关的氨基糖苷类耐药基因,这些基因在本研究中具有重要意义。对这些基因的初步筛选是从印度中央邦瓜廖尔地区的Swarna Rekha河道收集的水样进行的。共鉴定出5个基因,采用常规PCR进行序列验证,然后进行靶向测序。此外,设计了两个重复出现的基因npmA和sat4a的诊断平台,并从该地区的城市机构收集的废水样本中评估了它们的存在。这些基因在污水样本中的普遍存在证实了城市废物负担对污染当地水体的广泛影响。我们能够确定一些不可缺少的和高风险的氨基糖苷抗性提供基因,未在印度背景下报道。这种ARG筛查方法可支持未来抗生素耐药性相关公共卫生危害的风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genes encoding antibiotic modifying enzymes conferring resistance against aminoglycosides in bacteria: Their identification and detection from wastewater.

Global reporting of antibiotic resistant bacteria (ARB) bearing antibiotic resistance genes (ARGs) have increased in the past decade. Sewage systems act as breeding grounds for these pathogens. Dumping of untreated sewage effluent in river water systems have aided in their dissemination and spread. The molecular pathways circumventing antibiotics through ARGs is rising owing to overuse of these drugs. Use of aminoglycoside spectrum drugs has been increased exponentially. The genes providing resistance to these antibiotics are transferred through extra-chromosomal circular DNA elements. Polluted water bodies are ground zero for exchange of these genetic factors. Through literature survey, we shortlisted some clinically relevant genes which provide resistance against aminoglycosides and hold immense importance in present scenario. Initial screening for these genes was done on water samples collected from Swarna Rekha River channel in Gwalior District of Madhya Pradesh, India. A total of five identified genes were sequence verified using conventional PCR followed by targeted sequencing. Further, diagnostic platforms were designed for two reoccurring genes npmA & sat4A and their presence evaluated from wastewater samples collected from urban establishments of the district. Prevalence of these genes in sewage samples validated the broad impact of urban waste burden in polluting local water bodies. We were able to identify some indispensable and high risk aminoglycoside resistance providing genes, unreported in Indian context. This approach towards ARG screening could support risk assessment of future antibiotic resistance associated public health hazards.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
期刊最新文献
Optimal control analysis on the spread of COVID-19: Impact of contact transmission and environmental contamination. A cross-tissue transcriptome-wide association study identifies new key genes in ischemic stroke. c-Myc-targeted therapy in breast cancer: A review of fundamentals and pharmacological Insights. From diagnosis to therapy: The role of LncRNA GAS5 in combatting some cancers affecting women. Relationship between apoptosis gene DNA methylation and fetal growth and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1