{"title":"具有成纤维细胞球体的仿生梯度水凝胶用于全层皮肤再生。","authors":"Mina Kwon , Yuhan Lee , Ki Su Kim","doi":"10.1016/j.bioadv.2024.214152","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel-based scaffolds have been widely investigated for their use in tissue engineering to accelerate tissue regeneration. However, replicating the physiological microenvironments of tissues with appropriate biological cues remains challenging. Recent advances in gradient hydrogels have transformed tissue-engineering research by providing precise structures that mimic the extracellular matrix of natural tissues. Unlike conventional homogeneously structured hydrogels, gradient hydrogels provide a better bio-mimicking microenvironment for combined cell therapies in chronic wound treatment by regulating various cell behaviors, such as proliferation, migration, and differentiation. Here, we present the integration of L929 mouse fibroblast spheroids into gradient hydrogels to mimic the dermal stiffness microenvironment and we investigated their impact on full-thickness skin regeneration. A stiffness gradient was achieved by modulating the concentration of methacrylated hyaluronic acid (HA-MA) with varying degrees of methacrylation, using a dual-syringe pump system. The encapsulation of L929 spheroids with gradient hydrogel facilitated skin cell organization in a hierarchically ordered configuration, leading to full-thickness wound healing that was 1.53 times faster than the untreated group in a rat model. This study provides a method for investigating the potential role of gradient hydrogels in various tissue engineering and regeneration applications.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214152"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic gradient hydrogel with fibroblast spheroids for full-thickness skin regeneration\",\"authors\":\"Mina Kwon , Yuhan Lee , Ki Su Kim\",\"doi\":\"10.1016/j.bioadv.2024.214152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogel-based scaffolds have been widely investigated for their use in tissue engineering to accelerate tissue regeneration. However, replicating the physiological microenvironments of tissues with appropriate biological cues remains challenging. Recent advances in gradient hydrogels have transformed tissue-engineering research by providing precise structures that mimic the extracellular matrix of natural tissues. Unlike conventional homogeneously structured hydrogels, gradient hydrogels provide a better bio-mimicking microenvironment for combined cell therapies in chronic wound treatment by regulating various cell behaviors, such as proliferation, migration, and differentiation. Here, we present the integration of L929 mouse fibroblast spheroids into gradient hydrogels to mimic the dermal stiffness microenvironment and we investigated their impact on full-thickness skin regeneration. A stiffness gradient was achieved by modulating the concentration of methacrylated hyaluronic acid (HA-MA) with varying degrees of methacrylation, using a dual-syringe pump system. The encapsulation of L929 spheroids with gradient hydrogel facilitated skin cell organization in a hierarchically ordered configuration, leading to full-thickness wound healing that was 1.53 times faster than the untreated group in a rat model. This study provides a method for investigating the potential role of gradient hydrogels in various tissue engineering and regeneration applications.</div></div>\",\"PeriodicalId\":51111,\"journal\":{\"name\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"volume\":\"169 \",\"pages\":\"Article 214152\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772950824003959\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824003959","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Biomimetic gradient hydrogel with fibroblast spheroids for full-thickness skin regeneration
Hydrogel-based scaffolds have been widely investigated for their use in tissue engineering to accelerate tissue regeneration. However, replicating the physiological microenvironments of tissues with appropriate biological cues remains challenging. Recent advances in gradient hydrogels have transformed tissue-engineering research by providing precise structures that mimic the extracellular matrix of natural tissues. Unlike conventional homogeneously structured hydrogels, gradient hydrogels provide a better bio-mimicking microenvironment for combined cell therapies in chronic wound treatment by regulating various cell behaviors, such as proliferation, migration, and differentiation. Here, we present the integration of L929 mouse fibroblast spheroids into gradient hydrogels to mimic the dermal stiffness microenvironment and we investigated their impact on full-thickness skin regeneration. A stiffness gradient was achieved by modulating the concentration of methacrylated hyaluronic acid (HA-MA) with varying degrees of methacrylation, using a dual-syringe pump system. The encapsulation of L929 spheroids with gradient hydrogel facilitated skin cell organization in a hierarchically ordered configuration, leading to full-thickness wound healing that was 1.53 times faster than the untreated group in a rat model. This study provides a method for investigating the potential role of gradient hydrogels in various tissue engineering and regeneration applications.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!