{"title":"一个4D张量增强的多维卷积神经网络,用于准确预测蛋白质与配体的结合亲和力。","authors":"Dingfang Huang, Yu Wang, Yiming Sun, Wenhao Ji, Qing Zhang, Yunya Jiang, Haodi Qiu, Haichun Liu, Tao Lu, Xian Wei, Yadong Chen, Yanmin Zhang","doi":"10.1007/s11030-024-11044-y","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-ligand interactions are the molecular basis of many important cellular activities, such as gene regulation, cell metabolism, and signal transduction. Protein-ligand binding affinity is a crucial metric of the strength of the interaction between the two, and accurate prediction of its binding affinity is essential for discovering drugs' new uses. So far, although many predictive models based on machine learning and deep learning have been reported, most of the models mainly focus on one-dimensional sequence and two-dimensional structural characteristics of proteins and ligands, but fail to deeply explore the detailed interaction information between proteins and ligand atoms in the binding pocket region of three-dimensional space. In this study, we introduced a novel 4D tensor feature to capture key interactions within the binding pocket and developed a three-dimensional convolutional neural network (CNN) model based on this feature. Using ten-fold cross-validation, we identified the optimal parameter combination and pocket size. Additionally, we employed feature engineering to extract features across multiple dimensions, including one-dimensional sequences, two-dimensional structures of the ligand and protein, and three-dimensional interaction features between them. We proposed an efficient protein-ligand binding affinity prediction model MCDTA (multi-dimensional convolutional drug-target affinity), built on a multi-dimensional convolutional neural network framework. Feature ablation experiments revealed that the 4D tensor feature had the most significant impact on model performance. MCDTA performed exceptionally well on the PDBbind v.2020 dataset, achieving an RMSE of 1.231 and a PCC of 0.823. In comparative experiments, it outperformed five other mainstream binding affinity prediction models, with an RMSE of 1.349 and a PCC of 0.795. Moreover, MCDTA demonstrated strong generalization ability and practical screening performance across multiple benchmark datasets, highlighting its reliability and accuracy in predicting protein-ligand binding affinity. The code for MCDTA is available at https://github.com/dfhuang-AI/MCDTA .</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 4D tensor-enhanced multi-dimensional convolutional neural network for accurate prediction of protein-ligand binding affinity.\",\"authors\":\"Dingfang Huang, Yu Wang, Yiming Sun, Wenhao Ji, Qing Zhang, Yunya Jiang, Haodi Qiu, Haichun Liu, Tao Lu, Xian Wei, Yadong Chen, Yanmin Zhang\",\"doi\":\"10.1007/s11030-024-11044-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-ligand interactions are the molecular basis of many important cellular activities, such as gene regulation, cell metabolism, and signal transduction. Protein-ligand binding affinity is a crucial metric of the strength of the interaction between the two, and accurate prediction of its binding affinity is essential for discovering drugs' new uses. So far, although many predictive models based on machine learning and deep learning have been reported, most of the models mainly focus on one-dimensional sequence and two-dimensional structural characteristics of proteins and ligands, but fail to deeply explore the detailed interaction information between proteins and ligand atoms in the binding pocket region of three-dimensional space. In this study, we introduced a novel 4D tensor feature to capture key interactions within the binding pocket and developed a three-dimensional convolutional neural network (CNN) model based on this feature. Using ten-fold cross-validation, we identified the optimal parameter combination and pocket size. Additionally, we employed feature engineering to extract features across multiple dimensions, including one-dimensional sequences, two-dimensional structures of the ligand and protein, and three-dimensional interaction features between them. We proposed an efficient protein-ligand binding affinity prediction model MCDTA (multi-dimensional convolutional drug-target affinity), built on a multi-dimensional convolutional neural network framework. Feature ablation experiments revealed that the 4D tensor feature had the most significant impact on model performance. MCDTA performed exceptionally well on the PDBbind v.2020 dataset, achieving an RMSE of 1.231 and a PCC of 0.823. In comparative experiments, it outperformed five other mainstream binding affinity prediction models, with an RMSE of 1.349 and a PCC of 0.795. Moreover, MCDTA demonstrated strong generalization ability and practical screening performance across multiple benchmark datasets, highlighting its reliability and accuracy in predicting protein-ligand binding affinity. The code for MCDTA is available at https://github.com/dfhuang-AI/MCDTA .</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11044-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11044-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
A 4D tensor-enhanced multi-dimensional convolutional neural network for accurate prediction of protein-ligand binding affinity.
Protein-ligand interactions are the molecular basis of many important cellular activities, such as gene regulation, cell metabolism, and signal transduction. Protein-ligand binding affinity is a crucial metric of the strength of the interaction between the two, and accurate prediction of its binding affinity is essential for discovering drugs' new uses. So far, although many predictive models based on machine learning and deep learning have been reported, most of the models mainly focus on one-dimensional sequence and two-dimensional structural characteristics of proteins and ligands, but fail to deeply explore the detailed interaction information between proteins and ligand atoms in the binding pocket region of three-dimensional space. In this study, we introduced a novel 4D tensor feature to capture key interactions within the binding pocket and developed a three-dimensional convolutional neural network (CNN) model based on this feature. Using ten-fold cross-validation, we identified the optimal parameter combination and pocket size. Additionally, we employed feature engineering to extract features across multiple dimensions, including one-dimensional sequences, two-dimensional structures of the ligand and protein, and three-dimensional interaction features between them. We proposed an efficient protein-ligand binding affinity prediction model MCDTA (multi-dimensional convolutional drug-target affinity), built on a multi-dimensional convolutional neural network framework. Feature ablation experiments revealed that the 4D tensor feature had the most significant impact on model performance. MCDTA performed exceptionally well on the PDBbind v.2020 dataset, achieving an RMSE of 1.231 and a PCC of 0.823. In comparative experiments, it outperformed five other mainstream binding affinity prediction models, with an RMSE of 1.349 and a PCC of 0.795. Moreover, MCDTA demonstrated strong generalization ability and practical screening performance across multiple benchmark datasets, highlighting its reliability and accuracy in predicting protein-ligand binding affinity. The code for MCDTA is available at https://github.com/dfhuang-AI/MCDTA .
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;