Jaka Kranjc, Tihomir Tomašič, Stane Pajk, Matjaž Brinc, Anja Pišlar, Marko Anderluh
{"title":"虚拟筛选新发现β-1,4-半乳糖转移酶抑制剂","authors":"Jaka Kranjc, Tihomir Tomašič, Stane Pajk, Matjaž Brinc, Anja Pišlar, Marko Anderluh","doi":"10.1002/cmdc.202400896","DOIUrl":null,"url":null,"abstract":"<p><p>Seven different enzymes comprise the galactosyltransferases family, of which β-1,4-galactosyltransferase I (β-1,4-GALT1) is the major contributor to galactosylation activity in cells. Since abnormalities in galactosylation are associated with many pathophysiological conditions, β-1,4-GALT1 is an interesting new target for drug discovery and molecular probe design. There are several known β-1,4-GALT1 inhibitors, but most of them suffer from low cell permeability and thus low in vivo activity. In the present work, we describe an in silico screening performed using commercially available virtual compound libraries that led us to the discovery of novel β-1,4-GALT1 inhibitors. A virtual screening campaign was performed by docking compound libraries to the binding site of β-1,4-GALT1, followed by biological evaluation of selected hits for their β-1,4-GALT1 inhibitory activity. The IC<sub>50</sub> values were determined for the best performing inhibitors to obtain new chemotypes of β-1,4-GALT1 inhibitors.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400896"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Inhibitors of β-1,4-Galactosyltransferase I Discovered by Virtual Screening.\",\"authors\":\"Jaka Kranjc, Tihomir Tomašič, Stane Pajk, Matjaž Brinc, Anja Pišlar, Marko Anderluh\",\"doi\":\"10.1002/cmdc.202400896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seven different enzymes comprise the galactosyltransferases family, of which β-1,4-galactosyltransferase I (β-1,4-GALT1) is the major contributor to galactosylation activity in cells. Since abnormalities in galactosylation are associated with many pathophysiological conditions, β-1,4-GALT1 is an interesting new target for drug discovery and molecular probe design. There are several known β-1,4-GALT1 inhibitors, but most of them suffer from low cell permeability and thus low in vivo activity. In the present work, we describe an in silico screening performed using commercially available virtual compound libraries that led us to the discovery of novel β-1,4-GALT1 inhibitors. A virtual screening campaign was performed by docking compound libraries to the binding site of β-1,4-GALT1, followed by biological evaluation of selected hits for their β-1,4-GALT1 inhibitory activity. The IC<sub>50</sub> values were determined for the best performing inhibitors to obtain new chemotypes of β-1,4-GALT1 inhibitors.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400896\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400896\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400896","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
New Inhibitors of β-1,4-Galactosyltransferase I Discovered by Virtual Screening.
Seven different enzymes comprise the galactosyltransferases family, of which β-1,4-galactosyltransferase I (β-1,4-GALT1) is the major contributor to galactosylation activity in cells. Since abnormalities in galactosylation are associated with many pathophysiological conditions, β-1,4-GALT1 is an interesting new target for drug discovery and molecular probe design. There are several known β-1,4-GALT1 inhibitors, but most of them suffer from low cell permeability and thus low in vivo activity. In the present work, we describe an in silico screening performed using commercially available virtual compound libraries that led us to the discovery of novel β-1,4-GALT1 inhibitors. A virtual screening campaign was performed by docking compound libraries to the binding site of β-1,4-GALT1, followed by biological evaluation of selected hits for their β-1,4-GALT1 inhibitory activity. The IC50 values were determined for the best performing inhibitors to obtain new chemotypes of β-1,4-GALT1 inhibitors.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.