{"title":"酮康唑在Sprague-Dawley大鼠单眼滴注后的药代动力学和代谢。","authors":"Jiang Pu, Jinsong He, Ru Xue, Ruiqi Gao, Yaoming Yu, Wanyong Feng","doi":"10.5599/admet.2387","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Ketoconazole is limited to its conditioned oral use due to hepatic toxicity. Its ocular eye drop administration may be an option for mycotic keratitis treatment. Therefore, it is necessary to explore its pharmacokinetic and metabolic profile via topical ocular administration.</p><p><strong>Experimental approach: </strong>Nine rats were dosed at 300 μg/rat via topical ocular administration, and sacrificed at 5, 30, and 120 min with 3 rats/timepoint. Plasma, cornea, retina, and vitreous humour samples were collected, processed, and analysed.</p><p><strong>Key results: </strong>Ketoconazole was quantified with a mean peak plasma concentration of 445 ng/mL at 5 min post-dose. In the rat ocular tissue, the mean ketoconazole concentration at 5 min post-dose was 423 μg/g in the cornea, 4.96 μg/g in the retina, and 1.19 μg/g in the vitreous humour, respectively. The mean ketoconazole concentration in each matrix decreased from 5 to 120 min. The mean ketoconazole concentration at 120 min was 38.4 ng/mL in plasma, and 8.36, 0.0944, and 0.116 μg/g in the cornea, retina, and vitreous humour, respectively. Pooled plasma, cornea, retina, and vitreous humour homogenates were used for metabolite identification. Nine metabolites were identified in rat plasma, and O-dealkylated metabolite (M3) and dehydrogenated metabolite (M11) were the top two, accounting for 5.0 and 5.8 % of the relative mass abundance. The metabolic pathways were O-dealkylation, mono-oxygenation, and dehydrogenation. Eleven metabolites were identified in the rat cornea, and two metabolites were identified in the rat retina and vitreous humour, respectively. The O-dealkylated and hydrogenated metabolite (M2) was a dominant metabolite in the cornea, retina, and vitreous humour, while M3 and M11 were the dominant metabolites in plasma.</p><p><strong>Conclusion: </strong>Ketoconazole was a dominant component (≥ 98.5 %) in the cornea, retina, and vitreous humour, having higher concentrations in cornea than in plasma. M2 was identified as a dominant metabolite (1.1-1.2 %) in the cornea, retina, while M3 (5.0 %) and M11 (5.8 %) were identified as dominant metabolites in the plasma.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"12 6","pages":"943-955"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661808/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics and metabolism of ketoconazole after single ocular instillation in Sprague-Dawley rats.\",\"authors\":\"Jiang Pu, Jinsong He, Ru Xue, Ruiqi Gao, Yaoming Yu, Wanyong Feng\",\"doi\":\"10.5599/admet.2387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Ketoconazole is limited to its conditioned oral use due to hepatic toxicity. Its ocular eye drop administration may be an option for mycotic keratitis treatment. Therefore, it is necessary to explore its pharmacokinetic and metabolic profile via topical ocular administration.</p><p><strong>Experimental approach: </strong>Nine rats were dosed at 300 μg/rat via topical ocular administration, and sacrificed at 5, 30, and 120 min with 3 rats/timepoint. Plasma, cornea, retina, and vitreous humour samples were collected, processed, and analysed.</p><p><strong>Key results: </strong>Ketoconazole was quantified with a mean peak plasma concentration of 445 ng/mL at 5 min post-dose. In the rat ocular tissue, the mean ketoconazole concentration at 5 min post-dose was 423 μg/g in the cornea, 4.96 μg/g in the retina, and 1.19 μg/g in the vitreous humour, respectively. The mean ketoconazole concentration in each matrix decreased from 5 to 120 min. The mean ketoconazole concentration at 120 min was 38.4 ng/mL in plasma, and 8.36, 0.0944, and 0.116 μg/g in the cornea, retina, and vitreous humour, respectively. Pooled plasma, cornea, retina, and vitreous humour homogenates were used for metabolite identification. Nine metabolites were identified in rat plasma, and O-dealkylated metabolite (M3) and dehydrogenated metabolite (M11) were the top two, accounting for 5.0 and 5.8 % of the relative mass abundance. The metabolic pathways were O-dealkylation, mono-oxygenation, and dehydrogenation. Eleven metabolites were identified in the rat cornea, and two metabolites were identified in the rat retina and vitreous humour, respectively. The O-dealkylated and hydrogenated metabolite (M2) was a dominant metabolite in the cornea, retina, and vitreous humour, while M3 and M11 were the dominant metabolites in plasma.</p><p><strong>Conclusion: </strong>Ketoconazole was a dominant component (≥ 98.5 %) in the cornea, retina, and vitreous humour, having higher concentrations in cornea than in plasma. M2 was identified as a dominant metabolite (1.1-1.2 %) in the cornea, retina, while M3 (5.0 %) and M11 (5.8 %) were identified as dominant metabolites in the plasma.</p>\",\"PeriodicalId\":7259,\"journal\":{\"name\":\"ADMET and DMPK\",\"volume\":\"12 6\",\"pages\":\"943-955\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661808/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADMET and DMPK\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/admet.2387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Pharmacokinetics and metabolism of ketoconazole after single ocular instillation in Sprague-Dawley rats.
Background and purpose: Ketoconazole is limited to its conditioned oral use due to hepatic toxicity. Its ocular eye drop administration may be an option for mycotic keratitis treatment. Therefore, it is necessary to explore its pharmacokinetic and metabolic profile via topical ocular administration.
Experimental approach: Nine rats were dosed at 300 μg/rat via topical ocular administration, and sacrificed at 5, 30, and 120 min with 3 rats/timepoint. Plasma, cornea, retina, and vitreous humour samples were collected, processed, and analysed.
Key results: Ketoconazole was quantified with a mean peak plasma concentration of 445 ng/mL at 5 min post-dose. In the rat ocular tissue, the mean ketoconazole concentration at 5 min post-dose was 423 μg/g in the cornea, 4.96 μg/g in the retina, and 1.19 μg/g in the vitreous humour, respectively. The mean ketoconazole concentration in each matrix decreased from 5 to 120 min. The mean ketoconazole concentration at 120 min was 38.4 ng/mL in plasma, and 8.36, 0.0944, and 0.116 μg/g in the cornea, retina, and vitreous humour, respectively. Pooled plasma, cornea, retina, and vitreous humour homogenates were used for metabolite identification. Nine metabolites were identified in rat plasma, and O-dealkylated metabolite (M3) and dehydrogenated metabolite (M11) were the top two, accounting for 5.0 and 5.8 % of the relative mass abundance. The metabolic pathways were O-dealkylation, mono-oxygenation, and dehydrogenation. Eleven metabolites were identified in the rat cornea, and two metabolites were identified in the rat retina and vitreous humour, respectively. The O-dealkylated and hydrogenated metabolite (M2) was a dominant metabolite in the cornea, retina, and vitreous humour, while M3 and M11 were the dominant metabolites in plasma.
Conclusion: Ketoconazole was a dominant component (≥ 98.5 %) in the cornea, retina, and vitreous humour, having higher concentrations in cornea than in plasma. M2 was identified as a dominant metabolite (1.1-1.2 %) in the cornea, retina, while M3 (5.0 %) and M11 (5.8 %) were identified as dominant metabolites in the plasma.
期刊介绍:
ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study