酮康唑在Sprague-Dawley大鼠单眼滴注后的药代动力学和代谢。

IF 3.4 Q2 CHEMISTRY, MEDICINAL ADMET and DMPK Pub Date : 2024-11-09 eCollection Date: 2024-01-01 DOI:10.5599/admet.2387
Jiang Pu, Jinsong He, Ru Xue, Ruiqi Gao, Yaoming Yu, Wanyong Feng
{"title":"酮康唑在Sprague-Dawley大鼠单眼滴注后的药代动力学和代谢。","authors":"Jiang Pu, Jinsong He, Ru Xue, Ruiqi Gao, Yaoming Yu, Wanyong Feng","doi":"10.5599/admet.2387","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Ketoconazole is limited to its conditioned oral use due to hepatic toxicity. Its ocular eye drop administration may be an option for mycotic keratitis treatment. Therefore, it is necessary to explore its pharmacokinetic and metabolic profile via topical ocular administration.</p><p><strong>Experimental approach: </strong>Nine rats were dosed at 300 μg/rat via topical ocular administration, and sacrificed at 5, 30, and 120 min with 3 rats/timepoint. Plasma, cornea, retina, and vitreous humour samples were collected, processed, and analysed.</p><p><strong>Key results: </strong>Ketoconazole was quantified with a mean peak plasma concentration of 445 ng/mL at 5 min post-dose. In the rat ocular tissue, the mean ketoconazole concentration at 5 min post-dose was 423 μg/g in the cornea, 4.96 μg/g in the retina, and 1.19 μg/g in the vitreous humour, respectively. The mean ketoconazole concentration in each matrix decreased from 5 to 120 min. The mean ketoconazole concentration at 120 min was 38.4 ng/mL in plasma, and 8.36, 0.0944, and 0.116 μg/g in the cornea, retina, and vitreous humour, respectively. Pooled plasma, cornea, retina, and vitreous humour homogenates were used for metabolite identification. Nine metabolites were identified in rat plasma, and O-dealkylated metabolite (M3) and dehydrogenated metabolite (M11) were the top two, accounting for 5.0 and 5.8 % of the relative mass abundance. The metabolic pathways were O-dealkylation, mono-oxygenation, and dehydrogenation. Eleven metabolites were identified in the rat cornea, and two metabolites were identified in the rat retina and vitreous humour, respectively. The O-dealkylated and hydrogenated metabolite (M2) was a dominant metabolite in the cornea, retina, and vitreous humour, while M3 and M11 were the dominant metabolites in plasma.</p><p><strong>Conclusion: </strong>Ketoconazole was a dominant component (≥ 98.5 %) in the cornea, retina, and vitreous humour, having higher concentrations in cornea than in plasma. M2 was identified as a dominant metabolite (1.1-1.2 %) in the cornea, retina, while M3 (5.0 %) and M11 (5.8 %) were identified as dominant metabolites in the plasma.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"12 6","pages":"943-955"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661808/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics and metabolism of ketoconazole after single ocular instillation in Sprague-Dawley rats.\",\"authors\":\"Jiang Pu, Jinsong He, Ru Xue, Ruiqi Gao, Yaoming Yu, Wanyong Feng\",\"doi\":\"10.5599/admet.2387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Ketoconazole is limited to its conditioned oral use due to hepatic toxicity. Its ocular eye drop administration may be an option for mycotic keratitis treatment. Therefore, it is necessary to explore its pharmacokinetic and metabolic profile via topical ocular administration.</p><p><strong>Experimental approach: </strong>Nine rats were dosed at 300 μg/rat via topical ocular administration, and sacrificed at 5, 30, and 120 min with 3 rats/timepoint. Plasma, cornea, retina, and vitreous humour samples were collected, processed, and analysed.</p><p><strong>Key results: </strong>Ketoconazole was quantified with a mean peak plasma concentration of 445 ng/mL at 5 min post-dose. In the rat ocular tissue, the mean ketoconazole concentration at 5 min post-dose was 423 μg/g in the cornea, 4.96 μg/g in the retina, and 1.19 μg/g in the vitreous humour, respectively. The mean ketoconazole concentration in each matrix decreased from 5 to 120 min. The mean ketoconazole concentration at 120 min was 38.4 ng/mL in plasma, and 8.36, 0.0944, and 0.116 μg/g in the cornea, retina, and vitreous humour, respectively. Pooled plasma, cornea, retina, and vitreous humour homogenates were used for metabolite identification. Nine metabolites were identified in rat plasma, and O-dealkylated metabolite (M3) and dehydrogenated metabolite (M11) were the top two, accounting for 5.0 and 5.8 % of the relative mass abundance. The metabolic pathways were O-dealkylation, mono-oxygenation, and dehydrogenation. Eleven metabolites were identified in the rat cornea, and two metabolites were identified in the rat retina and vitreous humour, respectively. The O-dealkylated and hydrogenated metabolite (M2) was a dominant metabolite in the cornea, retina, and vitreous humour, while M3 and M11 were the dominant metabolites in plasma.</p><p><strong>Conclusion: </strong>Ketoconazole was a dominant component (≥ 98.5 %) in the cornea, retina, and vitreous humour, having higher concentrations in cornea than in plasma. M2 was identified as a dominant metabolite (1.1-1.2 %) in the cornea, retina, while M3 (5.0 %) and M11 (5.8 %) were identified as dominant metabolites in the plasma.</p>\",\"PeriodicalId\":7259,\"journal\":{\"name\":\"ADMET and DMPK\",\"volume\":\"12 6\",\"pages\":\"943-955\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661808/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADMET and DMPK\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/admet.2387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:酮康唑由于肝毒性限制其有条件的口服使用。其滴眼液可能是治疗真菌性角膜炎的一种选择。因此,有必要通过眼部局部给药来探索其药代动力学和代谢谱。实验方法:9只大鼠经眼外给药300 μg/只,分别于5、30、120 min处死,每个时间点3只。收集、处理和分析血浆、角膜、视网膜和玻璃体样本。主要结果:酮康唑定量,给药后5min平均峰血药浓度为445 ng/mL。在大鼠眼组织中,酮康唑给药后5min角膜、视网膜和玻璃体的平均浓度分别为423 μg、4.96 μg和1.19 μg。各基质中酮康唑的平均浓度从5 min降至120 min,血浆中酮康唑的平均浓度为38.4 ng/mL,角膜、视网膜和玻璃体中酮康唑的平均浓度分别为8.36、0.0944和0.116 μg/g。混合血浆、角膜、视网膜和玻璃体体液匀浆用于代谢物鉴定。在大鼠血浆中鉴定出9种代谢物,其中o脱烷基代谢物(M3)和脱氢代谢物(M11)含量最高,分别占相对质量丰度的5.0%和5.8%。代谢途径为o脱烷基、单氧和脱氢。在大鼠角膜中鉴定出11种代谢物,在大鼠视网膜和玻璃体中分别鉴定出2种代谢物。o脱烷基和氢化代谢物(M2)是角膜、视网膜和玻璃体中的主要代谢物,而M3和M11是血浆中的主要代谢物。结论:酮康唑在角膜、视网膜和玻璃体中以酮康唑为主(≥98.5%),其在角膜中的浓度高于血浆。M2在角膜、视网膜中为优势代谢物(1.1 ~ 1.2%),M3(5.0%)和M11(5.8%)在血浆中为优势代谢物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pharmacokinetics and metabolism of ketoconazole after single ocular instillation in Sprague-Dawley rats.

Background and purpose: Ketoconazole is limited to its conditioned oral use due to hepatic toxicity. Its ocular eye drop administration may be an option for mycotic keratitis treatment. Therefore, it is necessary to explore its pharmacokinetic and metabolic profile via topical ocular administration.

Experimental approach: Nine rats were dosed at 300 μg/rat via topical ocular administration, and sacrificed at 5, 30, and 120 min with 3 rats/timepoint. Plasma, cornea, retina, and vitreous humour samples were collected, processed, and analysed.

Key results: Ketoconazole was quantified with a mean peak plasma concentration of 445 ng/mL at 5 min post-dose. In the rat ocular tissue, the mean ketoconazole concentration at 5 min post-dose was 423 μg/g in the cornea, 4.96 μg/g in the retina, and 1.19 μg/g in the vitreous humour, respectively. The mean ketoconazole concentration in each matrix decreased from 5 to 120 min. The mean ketoconazole concentration at 120 min was 38.4 ng/mL in plasma, and 8.36, 0.0944, and 0.116 μg/g in the cornea, retina, and vitreous humour, respectively. Pooled plasma, cornea, retina, and vitreous humour homogenates were used for metabolite identification. Nine metabolites were identified in rat plasma, and O-dealkylated metabolite (M3) and dehydrogenated metabolite (M11) were the top two, accounting for 5.0 and 5.8 % of the relative mass abundance. The metabolic pathways were O-dealkylation, mono-oxygenation, and dehydrogenation. Eleven metabolites were identified in the rat cornea, and two metabolites were identified in the rat retina and vitreous humour, respectively. The O-dealkylated and hydrogenated metabolite (M2) was a dominant metabolite in the cornea, retina, and vitreous humour, while M3 and M11 were the dominant metabolites in plasma.

Conclusion: Ketoconazole was a dominant component (≥ 98.5 %) in the cornea, retina, and vitreous humour, having higher concentrations in cornea than in plasma. M2 was identified as a dominant metabolite (1.1-1.2 %) in the cornea, retina, while M3 (5.0 %) and M11 (5.8 %) were identified as dominant metabolites in the plasma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ADMET and DMPK
ADMET and DMPK Multiple-
CiteScore
4.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
期刊介绍: ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study
期刊最新文献
Flavonoids from Clerodendrum genus and their biological activities. Glyphosate-based herbicide metabolic profiles in human urine samples through proton nuclear magnetic resonance analysis. Natural serine proteases and their applications in combating amyloid formation. Combined approach of nanoemulgel and microneedle pre-treatment as a topical anticellulite therapy. Pharmacokinetics and metabolism of ketoconazole after single ocular instillation in Sprague-Dawley rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1