Xueyun Yang, Jianhao Zhu, Yingli Wang, Jiacun Wang, Yajuan Li, Yuanxiang Gu, Qingliang Lv, Lei Wang
{"title":"钴纳米粒子修饰的空心氮掺杂碳纳米纺锤使高性能锂氧电池成为可能。","authors":"Xueyun Yang, Jianhao Zhu, Yingli Wang, Jiacun Wang, Yajuan Li, Yuanxiang Gu, Qingliang Lv, Lei Wang","doi":"10.1016/j.jcis.2024.12.104","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O<sub>2</sub>) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O<sub>2</sub> battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO<sub>2</sub> intermediate, promoting formation of ultrathin nanosheet-like Li<sub>2</sub>O<sub>2</sub> with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging. The mesoporous hollow nanospindles can provide abundant electron/ions transport channels to synergistically accelerate the formation and decomposition of discharge products. The Li-O<sub>2</sub> battery based on Co@HCNs displays remarkably reduced discharge/charge polarization of 0.92 V, impressive rate performance, and stable operation for 250 cycles. This work will provide a new avenue to design advanced oxygen electrocatalysts for high-performance Li-O<sub>2</sub> battery.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"926-933"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.\",\"authors\":\"Xueyun Yang, Jianhao Zhu, Yingli Wang, Jiacun Wang, Yajuan Li, Yuanxiang Gu, Qingliang Lv, Lei Wang\",\"doi\":\"10.1016/j.jcis.2024.12.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O<sub>2</sub>) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O<sub>2</sub> battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO<sub>2</sub> intermediate, promoting formation of ultrathin nanosheet-like Li<sub>2</sub>O<sub>2</sub> with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging. The mesoporous hollow nanospindles can provide abundant electron/ions transport channels to synergistically accelerate the formation and decomposition of discharge products. The Li-O<sub>2</sub> battery based on Co@HCNs displays remarkably reduced discharge/charge polarization of 0.92 V, impressive rate performance, and stable operation for 250 cycles. This work will provide a new avenue to design advanced oxygen electrocatalysts for high-performance Li-O<sub>2</sub> battery.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"683 Pt 1\",\"pages\":\"926-933\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.104\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.104","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O2) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O2 battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO2 intermediate, promoting formation of ultrathin nanosheet-like Li2O2 with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging. The mesoporous hollow nanospindles can provide abundant electron/ions transport channels to synergistically accelerate the formation and decomposition of discharge products. The Li-O2 battery based on Co@HCNs displays remarkably reduced discharge/charge polarization of 0.92 V, impressive rate performance, and stable operation for 250 cycles. This work will provide a new avenue to design advanced oxygen electrocatalysts for high-performance Li-O2 battery.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies