钴纳米粒子修饰的空心氮掺杂碳纳米纺锤使高性能锂氧电池成为可能。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-01 Epub Date: 2024-12-17 DOI:10.1016/j.jcis.2024.12.104
Xueyun Yang, Jianhao Zhu, Yingli Wang, Jiacun Wang, Yajuan Li, Yuanxiang Gu, Qingliang Lv, Lei Wang
{"title":"钴纳米粒子修饰的空心氮掺杂碳纳米纺锤使高性能锂氧电池成为可能。","authors":"Xueyun Yang, Jianhao Zhu, Yingli Wang, Jiacun Wang, Yajuan Li, Yuanxiang Gu, Qingliang Lv, Lei Wang","doi":"10.1016/j.jcis.2024.12.104","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O<sub>2</sub>) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O<sub>2</sub> battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO<sub>2</sub> intermediate, promoting formation of ultrathin nanosheet-like Li<sub>2</sub>O<sub>2</sub> with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging. The mesoporous hollow nanospindles can provide abundant electron/ions transport channels to synergistically accelerate the formation and decomposition of discharge products. The Li-O<sub>2</sub> battery based on Co@HCNs displays remarkably reduced discharge/charge polarization of 0.92 V, impressive rate performance, and stable operation for 250 cycles. This work will provide a new avenue to design advanced oxygen electrocatalysts for high-performance Li-O<sub>2</sub> battery.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"926-933"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.\",\"authors\":\"Xueyun Yang, Jianhao Zhu, Yingli Wang, Jiacun Wang, Yajuan Li, Yuanxiang Gu, Qingliang Lv, Lei Wang\",\"doi\":\"10.1016/j.jcis.2024.12.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O<sub>2</sub>) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O<sub>2</sub> battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO<sub>2</sub> intermediate, promoting formation of ultrathin nanosheet-like Li<sub>2</sub>O<sub>2</sub> with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging. The mesoporous hollow nanospindles can provide abundant electron/ions transport channels to synergistically accelerate the formation and decomposition of discharge products. The Li-O<sub>2</sub> battery based on Co@HCNs displays remarkably reduced discharge/charge polarization of 0.92 V, impressive rate performance, and stable operation for 250 cycles. This work will provide a new avenue to design advanced oxygen electrocatalysts for high-performance Li-O<sub>2</sub> battery.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"683 Pt 1\",\"pages\":\"926-933\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.104\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.104","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管具有超高的理论能量密度和成本效益,但非质子锂氧(Li-O2)电池的阴极氧氧化还原动力学缓慢,电压滞后较大。在这里,我们精心设计了由n掺杂的介孔空心碳纳米纺锤(Co@HCNs)负载的超细Co纳米颗粒作为Li-O2电池的高效电催化剂。得益于强大的金属支撑相互作用,获得的Co@HCNs对LiO2中间体表现出高亲和力,促进在Co@HCNs阴极表面形成具有低阻抗接触界面的超薄纳米片状Li2O2,有利于充电时的可逆分解。介孔中空纳米纺锤体可以提供丰富的电子/离子传递通道,协同加速放电产物的形成和分解。基于Co@HCNs的锂离子电池的充放电极化明显降低至0.92 V,倍率性能令人印象深刻,可稳定运行250次。这项工作将为高性能锂氧电池的先进氧电催化剂的设计提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.

Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O2) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O2 battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO2 intermediate, promoting formation of ultrathin nanosheet-like Li2O2 with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging. The mesoporous hollow nanospindles can provide abundant electron/ions transport channels to synergistically accelerate the formation and decomposition of discharge products. The Li-O2 battery based on Co@HCNs displays remarkably reduced discharge/charge polarization of 0.92 V, impressive rate performance, and stable operation for 250 cycles. This work will provide a new avenue to design advanced oxygen electrocatalysts for high-performance Li-O2 battery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production. Modulation of interface structure on titanium-based metal-organic frameworks heterojunctions for boosting photocatalytic carbon dioxide reduction. In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery. In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors. Floating BiOBr/Ti3C2 aerogel spheres for efficient degradation of quinolone antibiotics: Rapid oxygen transfer via triphase interface and effective charges separation by internal electric field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1