{"title":"人工智能在胸脓肿的诊断、成像和治疗中的作用。","authors":"Adam Zumla, Rizwan Ahmed, Kunal Bakhri","doi":"10.1097/MCP.0000000000001150","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The management of thoracic empyema is often complicated by diagnostic delays, recurrence, treatment failures and infections with antibiotic resistant bacteria. The emergence of artificial intelligence (AI) in healthcare, particularly in clinical decision support, imaging, and diagnostic microbiology raises great expectations in addressing these challenges.</p><p><strong>Recent findings: </strong>Machine learning (ML) and AI models have been applied to CT scans and chest X-rays to identify and classify pleural effusions and empyema with greater accuracy. AI-based analyses can identify complex imaging features that are often missed by the human eye, improving diagnostic precision. AI-driven decision-support algorithms could reduce time to diagnosis, improve antibiotic stewardship, and enhance more precise and less invasive surgical therapy, significantly improving clinical outcomes and reducing inpatient hospital stays.</p><p><strong>Summary: </strong>ML and AI can analyse large datasets and recognize complex patterns and thus have the potential to enhance diagnostic accuracy, preop planning for thoracic surgery, and optimize surgical treatment strategies, antibiotic therapy, antibiotic stewardship, monitoring complications, and long-term patient management outcomes.</p>","PeriodicalId":11090,"journal":{"name":"Current Opinion in Pulmonary Medicine","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of artificial intelligence in the diagnosis, imaging, and treatment of thoracic empyema.\",\"authors\":\"Adam Zumla, Rizwan Ahmed, Kunal Bakhri\",\"doi\":\"10.1097/MCP.0000000000001150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The management of thoracic empyema is often complicated by diagnostic delays, recurrence, treatment failures and infections with antibiotic resistant bacteria. The emergence of artificial intelligence (AI) in healthcare, particularly in clinical decision support, imaging, and diagnostic microbiology raises great expectations in addressing these challenges.</p><p><strong>Recent findings: </strong>Machine learning (ML) and AI models have been applied to CT scans and chest X-rays to identify and classify pleural effusions and empyema with greater accuracy. AI-based analyses can identify complex imaging features that are often missed by the human eye, improving diagnostic precision. AI-driven decision-support algorithms could reduce time to diagnosis, improve antibiotic stewardship, and enhance more precise and less invasive surgical therapy, significantly improving clinical outcomes and reducing inpatient hospital stays.</p><p><strong>Summary: </strong>ML and AI can analyse large datasets and recognize complex patterns and thus have the potential to enhance diagnostic accuracy, preop planning for thoracic surgery, and optimize surgical treatment strategies, antibiotic therapy, antibiotic stewardship, monitoring complications, and long-term patient management outcomes.</p>\",\"PeriodicalId\":11090,\"journal\":{\"name\":\"Current Opinion in Pulmonary Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Pulmonary Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MCP.0000000000001150\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Pulmonary Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MCP.0000000000001150","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
The role of artificial intelligence in the diagnosis, imaging, and treatment of thoracic empyema.
Purpose of review: The management of thoracic empyema is often complicated by diagnostic delays, recurrence, treatment failures and infections with antibiotic resistant bacteria. The emergence of artificial intelligence (AI) in healthcare, particularly in clinical decision support, imaging, and diagnostic microbiology raises great expectations in addressing these challenges.
Recent findings: Machine learning (ML) and AI models have been applied to CT scans and chest X-rays to identify and classify pleural effusions and empyema with greater accuracy. AI-based analyses can identify complex imaging features that are often missed by the human eye, improving diagnostic precision. AI-driven decision-support algorithms could reduce time to diagnosis, improve antibiotic stewardship, and enhance more precise and less invasive surgical therapy, significantly improving clinical outcomes and reducing inpatient hospital stays.
Summary: ML and AI can analyse large datasets and recognize complex patterns and thus have the potential to enhance diagnostic accuracy, preop planning for thoracic surgery, and optimize surgical treatment strategies, antibiotic therapy, antibiotic stewardship, monitoring complications, and long-term patient management outcomes.
期刊介绍:
Current Opinion in Pulmonary Medicine is a highly regarded journal offering insightful editorials and on-the-mark invited reviews, covering key subjects such as asthma; cystic fibrosis; infectious diseases; diseases of the pleura; and sleep and respiratory neurobiology. Published bimonthly, each issue of Current Opinion in Pulmonary Medicine introduces world renowned guest editors and internationally recognized academics within the pulmonary field, delivering a widespread selection of expert assessments on the latest developments from the most recent literature.