{"title":"一种由分裂蛋白介导的新型环状δ - xbb15 RBD二聚体蛋白亚单位疫苗在小鼠体内引发免疫应答并对多种SARS-CoV-2变体产生保护作用。","authors":"Kangyin Li, Yan Wu, Hongqing Zhang, Shaohong Chen, Bihao Wu, Tingting Li, Entao Li, Feiyang Luo, Aishun Jin, Bo Zhang, Yanan Zhang, Rui Gong, Huajun Zhang, Sandra Chiu","doi":"10.1002/jmv.70134","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity. Here, we designed a cyclic tandem dimeric receptor-binding domain protein (cirRBD2) via the split intein Cth-Ter. Cyclization does not affect the antigen epitopes of RBD but results in better thermal stability than that of its linear counterpart (linRBD2). Compared with the mice immunized with linRBD2, those immunized with two doses of 5 μg of cirRBD2 produced significantly greater levels of broad-spectrum neutralizing antibodies, and generated a considerable cellular immune response. In the VEEV-VRP-hACE2-transduced mouse model, two doses of 5 μg of cirRBD2 provided protection against infection with BA.5, XBB.1.9, and partial protection against EG.5 which has more mutations. This study developed a novel circular RBD dimer subunit vaccine for SARS-CoV-2 that exhibits broad-spectrum neutralizing activity against various variants. A similar strategy can be applied to develop vaccines for other pathogens, especially for thermally stable vaccines.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"96 12","pages":"e70134"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Circular Delta-XBB15 RBD Dimeric Protein Subunit Vaccine Mediated by Split Intein Elicits an Immune Response and Protection Against Multiple SARS-CoV-2 Variants in Mice.\",\"authors\":\"Kangyin Li, Yan Wu, Hongqing Zhang, Shaohong Chen, Bihao Wu, Tingting Li, Entao Li, Feiyang Luo, Aishun Jin, Bo Zhang, Yanan Zhang, Rui Gong, Huajun Zhang, Sandra Chiu\",\"doi\":\"10.1002/jmv.70134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity. Here, we designed a cyclic tandem dimeric receptor-binding domain protein (cirRBD2) via the split intein Cth-Ter. Cyclization does not affect the antigen epitopes of RBD but results in better thermal stability than that of its linear counterpart (linRBD2). Compared with the mice immunized with linRBD2, those immunized with two doses of 5 μg of cirRBD2 produced significantly greater levels of broad-spectrum neutralizing antibodies, and generated a considerable cellular immune response. In the VEEV-VRP-hACE2-transduced mouse model, two doses of 5 μg of cirRBD2 provided protection against infection with BA.5, XBB.1.9, and partial protection against EG.5 which has more mutations. This study developed a novel circular RBD dimer subunit vaccine for SARS-CoV-2 that exhibits broad-spectrum neutralizing activity against various variants. A similar strategy can be applied to develop vaccines for other pathogens, especially for thermally stable vaccines.</p>\",\"PeriodicalId\":16354,\"journal\":{\"name\":\"Journal of Medical Virology\",\"volume\":\"96 12\",\"pages\":\"e70134\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jmv.70134\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmv.70134","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
A Novel Circular Delta-XBB15 RBD Dimeric Protein Subunit Vaccine Mediated by Split Intein Elicits an Immune Response and Protection Against Multiple SARS-CoV-2 Variants in Mice.
SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity. Here, we designed a cyclic tandem dimeric receptor-binding domain protein (cirRBD2) via the split intein Cth-Ter. Cyclization does not affect the antigen epitopes of RBD but results in better thermal stability than that of its linear counterpart (linRBD2). Compared with the mice immunized with linRBD2, those immunized with two doses of 5 μg of cirRBD2 produced significantly greater levels of broad-spectrum neutralizing antibodies, and generated a considerable cellular immune response. In the VEEV-VRP-hACE2-transduced mouse model, two doses of 5 μg of cirRBD2 provided protection against infection with BA.5, XBB.1.9, and partial protection against EG.5 which has more mutations. This study developed a novel circular RBD dimer subunit vaccine for SARS-CoV-2 that exhibits broad-spectrum neutralizing activity against various variants. A similar strategy can be applied to develop vaccines for other pathogens, especially for thermally stable vaccines.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.