一种由分裂蛋白介导的新型环状δ - xbb15 RBD二聚体蛋白亚单位疫苗在小鼠体内引发免疫应答并对多种SARS-CoV-2变体产生保护作用。

IF 6.8 3区 医学 Q1 VIROLOGY Journal of Medical Virology Pub Date : 2024-12-01 DOI:10.1002/jmv.70134
Kangyin Li, Yan Wu, Hongqing Zhang, Shaohong Chen, Bihao Wu, Tingting Li, Entao Li, Feiyang Luo, Aishun Jin, Bo Zhang, Yanan Zhang, Rui Gong, Huajun Zhang, Sandra Chiu
{"title":"一种由分裂蛋白介导的新型环状δ - xbb15 RBD二聚体蛋白亚单位疫苗在小鼠体内引发免疫应答并对多种SARS-CoV-2变体产生保护作用。","authors":"Kangyin Li, Yan Wu, Hongqing Zhang, Shaohong Chen, Bihao Wu, Tingting Li, Entao Li, Feiyang Luo, Aishun Jin, Bo Zhang, Yanan Zhang, Rui Gong, Huajun Zhang, Sandra Chiu","doi":"10.1002/jmv.70134","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity. Here, we designed a cyclic tandem dimeric receptor-binding domain protein (cirRBD2) via the split intein Cth-Ter. Cyclization does not affect the antigen epitopes of RBD but results in better thermal stability than that of its linear counterpart (linRBD2). Compared with the mice immunized with linRBD2, those immunized with two doses of 5 μg of cirRBD2 produced significantly greater levels of broad-spectrum neutralizing antibodies, and generated a considerable cellular immune response. In the VEEV-VRP-hACE2-transduced mouse model, two doses of 5 μg of cirRBD2 provided protection against infection with BA.5, XBB.1.9, and partial protection against EG.5 which has more mutations. This study developed a novel circular RBD dimer subunit vaccine for SARS-CoV-2 that exhibits broad-spectrum neutralizing activity against various variants. A similar strategy can be applied to develop vaccines for other pathogens, especially for thermally stable vaccines.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"96 12","pages":"e70134"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Circular Delta-XBB15 RBD Dimeric Protein Subunit Vaccine Mediated by Split Intein Elicits an Immune Response and Protection Against Multiple SARS-CoV-2 Variants in Mice.\",\"authors\":\"Kangyin Li, Yan Wu, Hongqing Zhang, Shaohong Chen, Bihao Wu, Tingting Li, Entao Li, Feiyang Luo, Aishun Jin, Bo Zhang, Yanan Zhang, Rui Gong, Huajun Zhang, Sandra Chiu\",\"doi\":\"10.1002/jmv.70134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity. Here, we designed a cyclic tandem dimeric receptor-binding domain protein (cirRBD2) via the split intein Cth-Ter. Cyclization does not affect the antigen epitopes of RBD but results in better thermal stability than that of its linear counterpart (linRBD2). Compared with the mice immunized with linRBD2, those immunized with two doses of 5 μg of cirRBD2 produced significantly greater levels of broad-spectrum neutralizing antibodies, and generated a considerable cellular immune response. In the VEEV-VRP-hACE2-transduced mouse model, two doses of 5 μg of cirRBD2 provided protection against infection with BA.5, XBB.1.9, and partial protection against EG.5 which has more mutations. This study developed a novel circular RBD dimer subunit vaccine for SARS-CoV-2 that exhibits broad-spectrum neutralizing activity against various variants. A similar strategy can be applied to develop vaccines for other pathogens, especially for thermally stable vaccines.</p>\",\"PeriodicalId\":16354,\"journal\":{\"name\":\"Journal of Medical Virology\",\"volume\":\"96 12\",\"pages\":\"e70134\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jmv.70134\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmv.70134","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SARS-CoV-2继续变异,导致突破性感染。开发新的疫苗战略以对抗各种毒株是至关重要的。蛋白质环化可以提高热稳定性,并可能提高免疫原性。在这里,我们设计了一个环串联二聚体受体结合域蛋白(cirRBD2),通过分裂间链Cth-Ter。环化不影响RBD的抗原表位,但其热稳定性优于其线性对应物(linRBD2)。与linRBD2免疫小鼠相比,两剂5 μg cirRBD2免疫小鼠产生的广谱中和抗体水平显著提高,并产生相当大的细胞免疫应答。在veev - vrp - hace2转导小鼠模型中,两剂5 μg cirRBD2对BA.5、XBB.1.9感染具有保护作用,对突变较多的EG.5具有部分保护作用。本研究开发了一种针对SARS-CoV-2的新型圆形RBD二聚体亚单位疫苗,该疫苗对各种变体具有广谱中和活性。类似的策略可以应用于开发针对其他病原体的疫苗,特别是热稳定疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Circular Delta-XBB15 RBD Dimeric Protein Subunit Vaccine Mediated by Split Intein Elicits an Immune Response and Protection Against Multiple SARS-CoV-2 Variants in Mice.

SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity. Here, we designed a cyclic tandem dimeric receptor-binding domain protein (cirRBD2) via the split intein Cth-Ter. Cyclization does not affect the antigen epitopes of RBD but results in better thermal stability than that of its linear counterpart (linRBD2). Compared with the mice immunized with linRBD2, those immunized with two doses of 5 μg of cirRBD2 produced significantly greater levels of broad-spectrum neutralizing antibodies, and generated a considerable cellular immune response. In the VEEV-VRP-hACE2-transduced mouse model, two doses of 5 μg of cirRBD2 provided protection against infection with BA.5, XBB.1.9, and partial protection against EG.5 which has more mutations. This study developed a novel circular RBD dimer subunit vaccine for SARS-CoV-2 that exhibits broad-spectrum neutralizing activity against various variants. A similar strategy can be applied to develop vaccines for other pathogens, especially for thermally stable vaccines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Virology
Journal of Medical Virology 医学-病毒学
CiteScore
23.20
自引率
2.40%
发文量
777
审稿时长
1 months
期刊介绍: The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells. The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists. The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.
期刊最新文献
Exploring the Interplay Between Cervicovaginal Microbiome, HPV Infection, and Cervical Intraepithelial Neoplasia in Taiwanese Women. A Novel HTNV Budding Inhibitor Interferes the Interaction Between Viral Glycoprotein and Host ESCRT Accessory Protein ALIX. Building a Bridge Between the Mechanism of EBV Reactivation and the Treatment of EBV-Associated Cancers. Fullerene (C60 & C70)-Meso-Tris-4-Carboxyphenyl Porphyrin Dyads Inhibit Entry of Wild-Type and Drug-Resistant HIV-1 Clades B and C. Tenofovir Disoproxil Fumarate Versus Entecavir: Effects on Lipid Profiles and Cardiovascular Outcomes in People Living With Chronic Hepatitis B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1