搜索系统的公平性

IF 8.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Foundations and Trends in Information Retrieval Pub Date : 2024-12-23 DOI:10.1561/1500000101
Yi Fang, Ashudeep Singh, Zhiqiang Tao
{"title":"搜索系统的公平性","authors":"Yi Fang, Ashudeep Singh, Zhiqiang Tao","doi":"10.1561/1500000101","DOIUrl":null,"url":null,"abstract":"<p>Search engines play a crucial role in organizing and delivering\ninformation to billions of users worldwide. However,\nthese systems often reflect and amplify existing societal\nbiases and stereotypes through their search results and rankings.\nThis concern has prompted researchers to investigate\nmethods for measuring and reducing algorithmic bias, with\nthe goal of developing more equitable search systems. This\nmonograph presents a comprehensive taxonomy of fairness\nin search systems and surveys the current research landscape.\nWe systematically examine how bias manifests across\nkey search components, including query interpretation and\nprocessing, document representation and indexing, result\nranking algorithms, and system evaluation metrics. By critically\nanalyzing the existing literature, we identify persistent\nchallenges and promising research directions in the pursuit\nof fairer search systems. Our aim is to provide a foundation\nfor future work in this rapidly evolving field while highlighting\nopportunities to create more inclusive and equitable\ninformation retrieval technologies.</p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"40 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fairness in Search Systems\",\"authors\":\"Yi Fang, Ashudeep Singh, Zhiqiang Tao\",\"doi\":\"10.1561/1500000101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Search engines play a crucial role in organizing and delivering\\ninformation to billions of users worldwide. However,\\nthese systems often reflect and amplify existing societal\\nbiases and stereotypes through their search results and rankings.\\nThis concern has prompted researchers to investigate\\nmethods for measuring and reducing algorithmic bias, with\\nthe goal of developing more equitable search systems. This\\nmonograph presents a comprehensive taxonomy of fairness\\nin search systems and surveys the current research landscape.\\nWe systematically examine how bias manifests across\\nkey search components, including query interpretation and\\nprocessing, document representation and indexing, result\\nranking algorithms, and system evaluation metrics. By critically\\nanalyzing the existing literature, we identify persistent\\nchallenges and promising research directions in the pursuit\\nof fairer search systems. Our aim is to provide a foundation\\nfor future work in this rapidly evolving field while highlighting\\nopportunities to create more inclusive and equitable\\ninformation retrieval technologies.</p>\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000101\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000101","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

搜索引擎在组织和向全球数十亿用户传递信息方面发挥着至关重要的作用。然而,这些系统往往通过搜索结果和排名反映和放大了现有的社会偏见和刻板印象。这种担忧促使研究人员研究衡量和减少算法偏差的方法,目的是开发更公平的搜索系统。这本专著提出了公平的搜索系统和调查目前的研究景观的综合分类。我们系统地研究了偏见如何在关键搜索组件中表现出来,包括查询解释和处理、文档表示和索引、结果排序算法和系统评估指标。通过批判性地分析现有文献,我们确定了在追求更公平的搜索系统中持续存在的挑战和有前途的研究方向。我们的目标是为这一快速发展领域的未来工作奠定基础,同时强调创造更具包容性和公平性的信息检索技术的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fairness in Search Systems

Search engines play a crucial role in organizing and delivering information to billions of users worldwide. However, these systems often reflect and amplify existing societal biases and stereotypes through their search results and rankings. This concern has prompted researchers to investigate methods for measuring and reducing algorithmic bias, with the goal of developing more equitable search systems. This monograph presents a comprehensive taxonomy of fairness in search systems and surveys the current research landscape. We systematically examine how bias manifests across key search components, including query interpretation and processing, document representation and indexing, result ranking algorithms, and system evaluation metrics. By critically analyzing the existing literature, we identify persistent challenges and promising research directions in the pursuit of fairer search systems. Our aim is to provide a foundation for future work in this rapidly evolving field while highlighting opportunities to create more inclusive and equitable information retrieval technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Information Retrieval
Foundations and Trends in Information Retrieval COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
39.10
自引率
0.00%
发文量
3
期刊介绍: The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field. Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.
期刊最新文献
Mathematical Information Retrieval: Search and Question Answering Information Discovery in E-commerce Fairness in Search Systems Multi-hop Question Answering User Simulation for Evaluating Information Access Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1