研究硬骨鱼全基因组复制对转座因子进化的影响。

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2025-01-06 DOI:10.1093/gbe/evae272
Rittika Mallik, Dustin J Wcisel, Thomas J Near, Jeffrey A Yoder, Alex Dornburg
{"title":"研究硬骨鱼全基因组复制对转座因子进化的影响。","authors":"Rittika Mallik, Dustin J Wcisel, Thomas J Near, Jeffrey A Yoder, Alex Dornburg","doi":"10.1093/gbe/evae272","DOIUrl":null,"url":null,"abstract":"<p><p>Transposable elements (TEs) can make up more than 50% of any given vertebrate's genome, with substantial variability in TE composition among lineages. TE variation is often linked to changes in gene regulation, genome size, and speciation. However, the role that genome duplication events have played in generating abrupt shifts in the composition of the mobilome over macroevolutionary timescales remains unclear. We investigated the degree to which the teleost genome duplication (TGD) shaped the diversification trajectory of the teleost mobilome. We integrate a new high coverage genome of Polypterus bichir with data from over 100 publicly available actinopterygian genomes to assess the macroevolutionary implications of genome duplication events on TE evolution in teleosts. Our results provide no evidence for a substantial shift in mobilome composition following the TGD event. Instead, the diversity of the teleost mobilome appears to have been shaped by a history of lineage-specific shifts in composition that are not correlated with commonly evoked drivers of diversification such as body size, water column usage, or latitude. Collectively, these results provide additional evidence for an emerging perspective that TGD did not catalyze bursts of diversification and innovation in the actinopterygian mobilome.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785729/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the Impact of Whole-Genome Duplication on Transposable Element Evolution in Teleost Fishes.\",\"authors\":\"Rittika Mallik, Dustin J Wcisel, Thomas J Near, Jeffrey A Yoder, Alex Dornburg\",\"doi\":\"10.1093/gbe/evae272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transposable elements (TEs) can make up more than 50% of any given vertebrate's genome, with substantial variability in TE composition among lineages. TE variation is often linked to changes in gene regulation, genome size, and speciation. However, the role that genome duplication events have played in generating abrupt shifts in the composition of the mobilome over macroevolutionary timescales remains unclear. We investigated the degree to which the teleost genome duplication (TGD) shaped the diversification trajectory of the teleost mobilome. We integrate a new high coverage genome of Polypterus bichir with data from over 100 publicly available actinopterygian genomes to assess the macroevolutionary implications of genome duplication events on TE evolution in teleosts. Our results provide no evidence for a substantial shift in mobilome composition following the TGD event. Instead, the diversity of the teleost mobilome appears to have been shaped by a history of lineage-specific shifts in composition that are not correlated with commonly evoked drivers of diversification such as body size, water column usage, or latitude. Collectively, these results provide additional evidence for an emerging perspective that TGD did not catalyze bursts of diversification and innovation in the actinopterygian mobilome.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785729/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae272\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae272","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转座因子(TE)可以构成任何给定脊椎动物基因组的50%以上,在谱系之间TE的组成具有很大的差异。TE变异通常与基因调控、基因组大小和物种形成的变化有关。然而,在宏观进化时间尺度上,基因组复制事件在产生移动组组成突变中所起的作用仍不清楚。我们研究了硬骨鱼基因组重复(TGD)在多大程度上塑造了硬骨鱼移动组的多样化轨迹。我们整合了一个新的高覆盖率的多角鱼基因组和来自100多个公开的放光翅鱼基因组的数据,以评估基因组复制事件对硬骨鱼TE进化的宏观进化意义。我们的研究结果没有提供证据表明TGD事件后移动组组成发生了实质性变化。相反,硬骨鱼移动组的多样性似乎是由谱系特定组成变化的历史形成的,这些变化与通常引起的多样化驱动因素(如体型、水柱使用或纬度)无关。总的来说,这些结果为一个新兴的观点提供了额外的证据,即TGD并没有催化放线菌移动组的多样化和创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the Impact of Whole-Genome Duplication on Transposable Element Evolution in Teleost Fishes.

Transposable elements (TEs) can make up more than 50% of any given vertebrate's genome, with substantial variability in TE composition among lineages. TE variation is often linked to changes in gene regulation, genome size, and speciation. However, the role that genome duplication events have played in generating abrupt shifts in the composition of the mobilome over macroevolutionary timescales remains unclear. We investigated the degree to which the teleost genome duplication (TGD) shaped the diversification trajectory of the teleost mobilome. We integrate a new high coverage genome of Polypterus bichir with data from over 100 publicly available actinopterygian genomes to assess the macroevolutionary implications of genome duplication events on TE evolution in teleosts. Our results provide no evidence for a substantial shift in mobilome composition following the TGD event. Instead, the diversity of the teleost mobilome appears to have been shaped by a history of lineage-specific shifts in composition that are not correlated with commonly evoked drivers of diversification such as body size, water column usage, or latitude. Collectively, these results provide additional evidence for an emerging perspective that TGD did not catalyze bursts of diversification and innovation in the actinopterygian mobilome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Pervasive mitochondrial tRNA gene loss in the clade B of haplosclerid sponges (Porifera, Demospongiae). Reduced efficacy of selection on a young Z chromosome region of Schistosoma japonicum. The genomic landscape, causes, and consequences of extensive phylogenomic discordance in murine rodents. Transcriptomic Data Reveal Divergent Paths of Chitinase Evolution Underlying Dietary Convergence in Anteaters and Pangolins. Protein Quality Control is a Master Modulator of Molecular Evolution in Bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1