一种用于放疗CT图像的新型可变形图像配准软件的基准测试和性能评估。

Shorug S. Alshammari , Sridhar Yaddanapudi , Blaž Kušnik , Rok Ivančič , Kristjan Anderle , Jonathan G. Li , Keith M. Furutani , Chris J. Beltran , Bo Lu
{"title":"一种用于放疗CT图像的新型可变形图像配准软件的基准测试和性能评估。","authors":"Shorug S. Alshammari ,&nbsp;Sridhar Yaddanapudi ,&nbsp;Blaž Kušnik ,&nbsp;Rok Ivančič ,&nbsp;Kristjan Anderle ,&nbsp;Jonathan G. Li ,&nbsp;Keith M. Furutani ,&nbsp;Chris J. Beltran ,&nbsp;Bo Lu","doi":"10.1016/j.tipsro.2024.100295","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>We evaluated and benchmarked a novel deformable image registration (DIR) software functionality (DirOne, Cosylab d.d., Ljubljana, Slovenia) by comparing it to two commercial systems, MIM and VelocityAI, following AAPM task group 132 (TG-132) guidelines.</div></div><div><h3>Methods</h3><div>Three publicly available datasets were used for evaluation. The first dataset includes primary and deformed phantom images for a male pelvis. The second, from DIR-Lab, contains ten sets of 4D CT thoracic scans. The third dataset, from the DIR Evaluation Project (DIREP), includes ten head and neck CTs. VelocityAI and MIM served as benchmarks to assess DirOne’s performance. Target registration error (TRE), dice similarity coefficient (DSC), and mean distance to agreement (MDA) were the evaluation metrics.</div></div><div><h3>Results</h3><div>For TRE, the average results for DirOne, MIM, and VelocityAI were 3.3 ± 3.1 mm, 2.7 ± 3.7 mm, and 3.4 ± 2.4 mm, respectively. For DSC, DirOne achieved 0.96 ± 0.02, MIM 0.98 ± 0.02, and VelocityAI 0.98 ± 0.01 across the first and second datasets. In the DIREP dataset, DirOne achieved 0.73 ± 0.34 for MDA and 0.91 ± 0.03 for DSC; MIM achieved 0.54 ± 0.36 and 0.93 ± 0.02, and VelocityAI 0.93 ± 0.38 and 0.90 ± 0.03.</div></div><div><h3>Conclusion</h3><div>The novel DIR software demonstrated clinically acceptable accuracy compared to other commercial systems, supporting its potential use in radiotherapy treatment planning applications such as automatic image segmentation, 4D segmentation propagation, and dose warping.</div></div>","PeriodicalId":36328,"journal":{"name":"Technical Innovations and Patient Support in Radiation Oncology","volume":"32 ","pages":"Article 100295"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Benchmarking and performance evaluation of a novel deformable image registration software for radiotherapy CT images\",\"authors\":\"Shorug S. Alshammari ,&nbsp;Sridhar Yaddanapudi ,&nbsp;Blaž Kušnik ,&nbsp;Rok Ivančič ,&nbsp;Kristjan Anderle ,&nbsp;Jonathan G. Li ,&nbsp;Keith M. Furutani ,&nbsp;Chris J. Beltran ,&nbsp;Bo Lu\",\"doi\":\"10.1016/j.tipsro.2024.100295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>We evaluated and benchmarked a novel deformable image registration (DIR) software functionality (DirOne, Cosylab d.d., Ljubljana, Slovenia) by comparing it to two commercial systems, MIM and VelocityAI, following AAPM task group 132 (TG-132) guidelines.</div></div><div><h3>Methods</h3><div>Three publicly available datasets were used for evaluation. The first dataset includes primary and deformed phantom images for a male pelvis. The second, from DIR-Lab, contains ten sets of 4D CT thoracic scans. The third dataset, from the DIR Evaluation Project (DIREP), includes ten head and neck CTs. VelocityAI and MIM served as benchmarks to assess DirOne’s performance. Target registration error (TRE), dice similarity coefficient (DSC), and mean distance to agreement (MDA) were the evaluation metrics.</div></div><div><h3>Results</h3><div>For TRE, the average results for DirOne, MIM, and VelocityAI were 3.3 ± 3.1 mm, 2.7 ± 3.7 mm, and 3.4 ± 2.4 mm, respectively. For DSC, DirOne achieved 0.96 ± 0.02, MIM 0.98 ± 0.02, and VelocityAI 0.98 ± 0.01 across the first and second datasets. In the DIREP dataset, DirOne achieved 0.73 ± 0.34 for MDA and 0.91 ± 0.03 for DSC; MIM achieved 0.54 ± 0.36 and 0.93 ± 0.02, and VelocityAI 0.93 ± 0.38 and 0.90 ± 0.03.</div></div><div><h3>Conclusion</h3><div>The novel DIR software demonstrated clinically acceptable accuracy compared to other commercial systems, supporting its potential use in radiotherapy treatment planning applications such as automatic image segmentation, 4D segmentation propagation, and dose warping.</div></div>\",\"PeriodicalId\":36328,\"journal\":{\"name\":\"Technical Innovations and Patient Support in Radiation Oncology\",\"volume\":\"32 \",\"pages\":\"Article 100295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Innovations and Patient Support in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405632424000623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Nursing\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Innovations and Patient Support in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405632424000623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们根据AAPM任务组132 (TG-132)指南,将一种新的可变形图像配准(DIR)软件功能(DirOne, Cosylab博士,卢布尔雅那,斯洛文尼亚)与两个商业系统MIM和VelocityAI进行比较,评估并对其进行基准测试。方法:使用三个公开可用的数据集进行评估。第一个数据集包括男性骨盆的原始和变形幻象图像。第二份来自DIR-Lab,包含十组4D CT胸部扫描。第三个数据集来自DIR评估项目(DIREP),包括10个头颈部ct。VelocityAI和MIM作为评估DirOne性能的基准。目标配准误差(TRE)、骰子相似系数(DSC)和平均一致距离(MDA)为评价指标。结果:对于TRE, DirOne、MIM和VelocityAI的平均结果分别为3.3±3.1 mm、2.7±3.7 mm和3.4±2.4 mm。对于DSC, DirOne在第一和第二数据集上实现了0.96±0.02,MIM为0.98±0.02,VelocityAI为0.98±0.01。在DIREP数据集中,DirOne的MDA和DSC分别达到0.73±0.34和0.91±0.03;MIM分别为0.54±0.36和0.93±0.02,VelocityAI分别为0.93±0.38和0.90±0.03。结论:与其他商业系统相比,新型DIR软件具有临床可接受的准确性,支持其在放射治疗计划应用中的潜在应用,如自动图像分割,4D分割传播和剂量翘曲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmarking and performance evaluation of a novel deformable image registration software for radiotherapy CT images

Purpose

We evaluated and benchmarked a novel deformable image registration (DIR) software functionality (DirOne, Cosylab d.d., Ljubljana, Slovenia) by comparing it to two commercial systems, MIM and VelocityAI, following AAPM task group 132 (TG-132) guidelines.

Methods

Three publicly available datasets were used for evaluation. The first dataset includes primary and deformed phantom images for a male pelvis. The second, from DIR-Lab, contains ten sets of 4D CT thoracic scans. The third dataset, from the DIR Evaluation Project (DIREP), includes ten head and neck CTs. VelocityAI and MIM served as benchmarks to assess DirOne’s performance. Target registration error (TRE), dice similarity coefficient (DSC), and mean distance to agreement (MDA) were the evaluation metrics.

Results

For TRE, the average results for DirOne, MIM, and VelocityAI were 3.3 ± 3.1 mm, 2.7 ± 3.7 mm, and 3.4 ± 2.4 mm, respectively. For DSC, DirOne achieved 0.96 ± 0.02, MIM 0.98 ± 0.02, and VelocityAI 0.98 ± 0.01 across the first and second datasets. In the DIREP dataset, DirOne achieved 0.73 ± 0.34 for MDA and 0.91 ± 0.03 for DSC; MIM achieved 0.54 ± 0.36 and 0.93 ± 0.02, and VelocityAI 0.93 ± 0.38 and 0.90 ± 0.03.

Conclusion

The novel DIR software demonstrated clinically acceptable accuracy compared to other commercial systems, supporting its potential use in radiotherapy treatment planning applications such as automatic image segmentation, 4D segmentation propagation, and dose warping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
48
审稿时长
67 days
期刊最新文献
Treatment efficiency and quality improvement via double imaging modality (DIM) versus single imaging modality (SIM) image-guided radiotherapy for prostate cancer Patient experience preparing for prostate cancer radiotherapy Training for tomorrow: Establishing a worldwide curriculum in online adaptive radiation therapy Pan-Canadian assessment of image guided adaptive radiation therapy and the role of the radiation therapist Geometric and dosimetric evaluation of CTV contour adaptations by radiation therapists for adaptive prostate radiotherapy on a 0.35 T MR-Linac
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1