Manish Ayushman, Hung-Pang Lee, Pranay Agarwal, Georgios Mikos, Xinming Tong, Sarah Jones, Sauradeep Sinha, Stuart Goodman, Nidhi Bhutani, Fan Yang
{"title":"滑动水凝胶揭示机械传感的调节减轻骨关节炎软骨细胞的炎症表型在3D。","authors":"Manish Ayushman, Hung-Pang Lee, Pranay Agarwal, Georgios Mikos, Xinming Tong, Sarah Jones, Sauradeep Sinha, Stuart Goodman, Nidhi Bhutani, Fan Yang","doi":"10.1002/jbm.a.37861","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Osteoarthritis (OA) is a prevalen degenerative joint disease with no FDA-approved therapies that can halt or reverse its progression. Current treatments address symptoms like pain and inflammation, but not underlying disease mechanisms. OA progression is marked by increased inflammation and extracellular matrix (ECM) degradation of the joint cartilage. While the role of biochemical cues has been widely studied for OA, how matrix mechanical cues influence OA phenotype remains poorly understood. Using sliding hydrogels (SGs) as a tool, we examine how local matrix compliance in 3D modulates OA chondrocyte phenotype and associated mechanosensing. We demonstrate that local matrix compliance reduces the inflammatory phenotype of OA chondrocytes, as indicated by decreased gene expression of catabolic markers and proinflammatory cytokine secretion. This is achieved via significantly reduced nuclear NF-κB expression and signaling in OA chondrocytes. Live cell imaging shows enhanced cellular and nuclear dynamics with increased matrix deformation in the compliant SG. Blocking cellular dynamics negates SG compliance-induced benefits in reducing OA inflammatory phenotype. Further, SG alters nuclear mechanosensing in OA as indicated by increased nuclear lamin reinforcement and chromatin condensation. Finally, we demonstrate that a drug inhibiting histone lysine demethylase to modulate chromatin accessibility reduces OA inflammation in 3D hydrogels. These findings advance our understanding of how ECM mechanics regulate OA mechanobiology and progression and highlight potential disease-modifying treatments via epigenetic and mechanosensing-based therapies.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding Hydrogels Reveal the Modulation of Mechanosensing Attenuates the Inflammatory Phenotype of Osteoarthritic Chondrocytes in 3D\",\"authors\":\"Manish Ayushman, Hung-Pang Lee, Pranay Agarwal, Georgios Mikos, Xinming Tong, Sarah Jones, Sauradeep Sinha, Stuart Goodman, Nidhi Bhutani, Fan Yang\",\"doi\":\"10.1002/jbm.a.37861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Osteoarthritis (OA) is a prevalen degenerative joint disease with no FDA-approved therapies that can halt or reverse its progression. Current treatments address symptoms like pain and inflammation, but not underlying disease mechanisms. OA progression is marked by increased inflammation and extracellular matrix (ECM) degradation of the joint cartilage. While the role of biochemical cues has been widely studied for OA, how matrix mechanical cues influence OA phenotype remains poorly understood. Using sliding hydrogels (SGs) as a tool, we examine how local matrix compliance in 3D modulates OA chondrocyte phenotype and associated mechanosensing. We demonstrate that local matrix compliance reduces the inflammatory phenotype of OA chondrocytes, as indicated by decreased gene expression of catabolic markers and proinflammatory cytokine secretion. This is achieved via significantly reduced nuclear NF-κB expression and signaling in OA chondrocytes. Live cell imaging shows enhanced cellular and nuclear dynamics with increased matrix deformation in the compliant SG. Blocking cellular dynamics negates SG compliance-induced benefits in reducing OA inflammatory phenotype. Further, SG alters nuclear mechanosensing in OA as indicated by increased nuclear lamin reinforcement and chromatin condensation. Finally, we demonstrate that a drug inhibiting histone lysine demethylase to modulate chromatin accessibility reduces OA inflammation in 3D hydrogels. These findings advance our understanding of how ECM mechanics regulate OA mechanobiology and progression and highlight potential disease-modifying treatments via epigenetic and mechanosensing-based therapies.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37861\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37861","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Sliding Hydrogels Reveal the Modulation of Mechanosensing Attenuates the Inflammatory Phenotype of Osteoarthritic Chondrocytes in 3D
Osteoarthritis (OA) is a prevalen degenerative joint disease with no FDA-approved therapies that can halt or reverse its progression. Current treatments address symptoms like pain and inflammation, but not underlying disease mechanisms. OA progression is marked by increased inflammation and extracellular matrix (ECM) degradation of the joint cartilage. While the role of biochemical cues has been widely studied for OA, how matrix mechanical cues influence OA phenotype remains poorly understood. Using sliding hydrogels (SGs) as a tool, we examine how local matrix compliance in 3D modulates OA chondrocyte phenotype and associated mechanosensing. We demonstrate that local matrix compliance reduces the inflammatory phenotype of OA chondrocytes, as indicated by decreased gene expression of catabolic markers and proinflammatory cytokine secretion. This is achieved via significantly reduced nuclear NF-κB expression and signaling in OA chondrocytes. Live cell imaging shows enhanced cellular and nuclear dynamics with increased matrix deformation in the compliant SG. Blocking cellular dynamics negates SG compliance-induced benefits in reducing OA inflammatory phenotype. Further, SG alters nuclear mechanosensing in OA as indicated by increased nuclear lamin reinforcement and chromatin condensation. Finally, we demonstrate that a drug inhibiting histone lysine demethylase to modulate chromatin accessibility reduces OA inflammation in 3D hydrogels. These findings advance our understanding of how ECM mechanics regulate OA mechanobiology and progression and highlight potential disease-modifying treatments via epigenetic and mechanosensing-based therapies.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.