Dilara Ali, Sarah S Peláez, Thomas Lemazurier, Ariane Schroeter, Michael Adler, JaeHwi Bong, Oliver Germershaus, Hanns-Christian Mahler, Andrea Allmendinger
{"title":"用于生物制药药品无菌灌装加工的管道对汽化过氧化氢的吸收。","authors":"Dilara Ali, Sarah S Peláez, Thomas Lemazurier, Ariane Schroeter, Michael Adler, JaeHwi Bong, Oliver Germershaus, Hanns-Christian Mahler, Andrea Allmendinger","doi":"10.1016/j.ejpb.2024.114618","DOIUrl":null,"url":null,"abstract":"<p><p>Aseptic filling of biopharmaceutical products requires a grade A cleanroom environment, preferably ensured by isolators in grade C surroundings. Isolators are decontaminated before the start of filling processes using vaporized hydrogen peroxide (VHP) and filling starts at pre-defined residual VHP levels (e.g., below 0.5 ppm) depending on product sensitivity towards VHP oxidation. Manufacturing equipment and consumables, including filling assemblies, are exposed to VHP during or after the decontamination cycle or after line interruptions. We studied the VHP uptake by tubing in a lab-scale model isolator to evaluate the impact of tubing properties including contact material, tubing dimensions, suppliers, and VHP exposure (concentration and exposure time). Quantifying the release of H<sub>2</sub>O<sub>2</sub> from the tubing into solution using an Amplex Red Hydrogen Peroxide Assay, showed that H<sub>2</sub>O<sub>2</sub> concentrations decreased linearly with an increase in wall thickness and increased with higher surface to volume ratio. We further conclude that thermoplastic elastomer and thermoplastic vulcanizate tubing did not show any measurable VHP uptake for the tested conditions, whereas significant VHP uptake occurred in different platinum cured silicone tubing depending on tubing material and supplier. We further verified the results in a GMP manufacturing isolator setting. Based on our findings, we recommend to evaluate VHP uptake of filling tubing used for fill-finish manufacturing in isolators, to reduce the risk of oxidation for active pharmaceutical ingredients or excipients.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114618"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vaporized Hydogen Peroxide Uptake by Tubing used for Aseptic Fill-Finish Manufacturing of Biopharmaceutical Drug Products.\",\"authors\":\"Dilara Ali, Sarah S Peláez, Thomas Lemazurier, Ariane Schroeter, Michael Adler, JaeHwi Bong, Oliver Germershaus, Hanns-Christian Mahler, Andrea Allmendinger\",\"doi\":\"10.1016/j.ejpb.2024.114618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aseptic filling of biopharmaceutical products requires a grade A cleanroom environment, preferably ensured by isolators in grade C surroundings. Isolators are decontaminated before the start of filling processes using vaporized hydrogen peroxide (VHP) and filling starts at pre-defined residual VHP levels (e.g., below 0.5 ppm) depending on product sensitivity towards VHP oxidation. Manufacturing equipment and consumables, including filling assemblies, are exposed to VHP during or after the decontamination cycle or after line interruptions. We studied the VHP uptake by tubing in a lab-scale model isolator to evaluate the impact of tubing properties including contact material, tubing dimensions, suppliers, and VHP exposure (concentration and exposure time). Quantifying the release of H<sub>2</sub>O<sub>2</sub> from the tubing into solution using an Amplex Red Hydrogen Peroxide Assay, showed that H<sub>2</sub>O<sub>2</sub> concentrations decreased linearly with an increase in wall thickness and increased with higher surface to volume ratio. We further conclude that thermoplastic elastomer and thermoplastic vulcanizate tubing did not show any measurable VHP uptake for the tested conditions, whereas significant VHP uptake occurred in different platinum cured silicone tubing depending on tubing material and supplier. We further verified the results in a GMP manufacturing isolator setting. Based on our findings, we recommend to evaluate VHP uptake of filling tubing used for fill-finish manufacturing in isolators, to reduce the risk of oxidation for active pharmaceutical ingredients or excipients.</p>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\" \",\"pages\":\"114618\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejpb.2024.114618\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2024.114618","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Vaporized Hydogen Peroxide Uptake by Tubing used for Aseptic Fill-Finish Manufacturing of Biopharmaceutical Drug Products.
Aseptic filling of biopharmaceutical products requires a grade A cleanroom environment, preferably ensured by isolators in grade C surroundings. Isolators are decontaminated before the start of filling processes using vaporized hydrogen peroxide (VHP) and filling starts at pre-defined residual VHP levels (e.g., below 0.5 ppm) depending on product sensitivity towards VHP oxidation. Manufacturing equipment and consumables, including filling assemblies, are exposed to VHP during or after the decontamination cycle or after line interruptions. We studied the VHP uptake by tubing in a lab-scale model isolator to evaluate the impact of tubing properties including contact material, tubing dimensions, suppliers, and VHP exposure (concentration and exposure time). Quantifying the release of H2O2 from the tubing into solution using an Amplex Red Hydrogen Peroxide Assay, showed that H2O2 concentrations decreased linearly with an increase in wall thickness and increased with higher surface to volume ratio. We further conclude that thermoplastic elastomer and thermoplastic vulcanizate tubing did not show any measurable VHP uptake for the tested conditions, whereas significant VHP uptake occurred in different platinum cured silicone tubing depending on tubing material and supplier. We further verified the results in a GMP manufacturing isolator setting. Based on our findings, we recommend to evaluate VHP uptake of filling tubing used for fill-finish manufacturing in isolators, to reduce the risk of oxidation for active pharmaceutical ingredients or excipients.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.