湿纺丝法制备纳米银和还原氧化石墨烯应变传感纤维。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2025-01-06 DOI:10.1088/1361-6528/ada2f4
Xiaoyuan Liu, Qiuyu Xu, Xuepeng Zhang, Wei Jiang, Junmei Li, Runan Pan, Ruochen Song, Lifang Liu
{"title":"湿纺丝法制备纳米银和还原氧化石墨烯应变传感纤维。","authors":"Xiaoyuan Liu, Qiuyu Xu, Xuepeng Zhang, Wei Jiang, Junmei Li, Runan Pan, Ruochen Song, Lifang Liu","doi":"10.1088/1361-6528/ada2f4","DOIUrl":null,"url":null,"abstract":"<p><p>To advance the industrialization of flexible strain sensors, an innovative flexible sensing fiber was developed through a sophisticated wet spinning process. Silver trifluoroacetate and graphene oxide (GO) were combined with thermoplastic polyurethane (TPU) to prepare the fibers via wet spinning. Ascorbic acid was used to<i>in situ</i>reduce the silver trifluoroacetate and graphene oxide within the polyurethane, causing the growth of silver nanoparticles to bond with reduced graphene oxide, forming a dual conductive pathway. This resulted in the creation of silver nanoparticles/reduced graphene oxide/polyurethane fibers (AgNPs-rGO-TPU sensing fibers). The tensile and sensing properties of AgNPs-rGO-TPU sensing fibers under different parameters were investigated. The results showed that with 25 wt% TPU as the matrix, 30 wt% silver trifluoroacetate, and 1 wt% graphene oxide, the fibers achieved an optimal balance of mechanical and sensing properties. The tensile strength was 7.69 MPa, the elongation at break was 370.75%, and the toughness modulus was 18.45 MJ m<sup>-3</sup>. The AgNPs-rGO-TPU sensing fibers effectively detect external stimuli, exhibiting high sensitivity over a wide strain range (gauge factor is 4.25 below 5% strain, 24.79 in the 5%-25% strain range, 23.06 in the 25%-80% strain range, and 21.32 in the 80%-110% strain range), with a conductivity of 163.17 ms·cm<sup>-1</sup>. They can stably recognize movements and physiological signals from various parts of the human body, showing good application prospects.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of strain-sensing fibers with silver nanoparticles and reduced graphene oxide via wet spinning.\",\"authors\":\"Xiaoyuan Liu, Qiuyu Xu, Xuepeng Zhang, Wei Jiang, Junmei Li, Runan Pan, Ruochen Song, Lifang Liu\",\"doi\":\"10.1088/1361-6528/ada2f4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To advance the industrialization of flexible strain sensors, an innovative flexible sensing fiber was developed through a sophisticated wet spinning process. Silver trifluoroacetate and graphene oxide (GO) were combined with thermoplastic polyurethane (TPU) to prepare the fibers via wet spinning. Ascorbic acid was used to<i>in situ</i>reduce the silver trifluoroacetate and graphene oxide within the polyurethane, causing the growth of silver nanoparticles to bond with reduced graphene oxide, forming a dual conductive pathway. This resulted in the creation of silver nanoparticles/reduced graphene oxide/polyurethane fibers (AgNPs-rGO-TPU sensing fibers). The tensile and sensing properties of AgNPs-rGO-TPU sensing fibers under different parameters were investigated. The results showed that with 25 wt% TPU as the matrix, 30 wt% silver trifluoroacetate, and 1 wt% graphene oxide, the fibers achieved an optimal balance of mechanical and sensing properties. The tensile strength was 7.69 MPa, the elongation at break was 370.75%, and the toughness modulus was 18.45 MJ m<sup>-3</sup>. The AgNPs-rGO-TPU sensing fibers effectively detect external stimuli, exhibiting high sensitivity over a wide strain range (gauge factor is 4.25 below 5% strain, 24.79 in the 5%-25% strain range, 23.06 in the 25%-80% strain range, and 21.32 in the 80%-110% strain range), with a conductivity of 163.17 ms·cm<sup>-1</sup>. They can stably recognize movements and physiological signals from various parts of the human body, showing good application prospects.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ada2f4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada2f4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为推进柔性应变传感器的产业化,采用先进的湿法纺丝工艺,研制了一种新型柔性传感纤维。将三氟乙酸银(C2AgF3O2)和氧化石墨烯(GO)与热塑性聚氨酯(TPU)结合,采用湿法纺丝制备纤维。使用抗坏血酸(L-AA)原位还原聚氨酯中的三氟乙酸银和氧化石墨烯,使银纳米颗粒与还原的氧化石墨烯结合,形成双导电途径。这导致了银纳米颗粒/还原氧化石墨烯/聚氨酯纤维(AgNPs-rGO-TPU传感纤维)的产生。研究了不同参数下AgNPs-rGO-TPU传感纤维的拉伸性能和传感性能。结果表明,以25wt%的TPU为基体,30wt%的三氟乙酸银和1wt%的氧化石墨烯为基体,纤维的机械性能和传感性能达到了最佳平衡。拉伸强度为7.69 MPa,断裂伸长率为370.75%,韧性模量为18.45 MJ·m-3。AgNPs-rGO-TPU传感纤维能有效检测外界刺激,在较宽应变范围内具有较高的灵敏度(5%应变下GF为4.25,5%-25%应变范围内GF为24.79,25%-80%应变范围内GF为23.06,80%-110%应变范围内GF为21.32),电导率为163.17 ms·cm-1。它们能够稳定地识别来自人体各部位的运动和生理信号,具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of strain-sensing fibers with silver nanoparticles and reduced graphene oxide via wet spinning.

To advance the industrialization of flexible strain sensors, an innovative flexible sensing fiber was developed through a sophisticated wet spinning process. Silver trifluoroacetate and graphene oxide (GO) were combined with thermoplastic polyurethane (TPU) to prepare the fibers via wet spinning. Ascorbic acid was used toin situreduce the silver trifluoroacetate and graphene oxide within the polyurethane, causing the growth of silver nanoparticles to bond with reduced graphene oxide, forming a dual conductive pathway. This resulted in the creation of silver nanoparticles/reduced graphene oxide/polyurethane fibers (AgNPs-rGO-TPU sensing fibers). The tensile and sensing properties of AgNPs-rGO-TPU sensing fibers under different parameters were investigated. The results showed that with 25 wt% TPU as the matrix, 30 wt% silver trifluoroacetate, and 1 wt% graphene oxide, the fibers achieved an optimal balance of mechanical and sensing properties. The tensile strength was 7.69 MPa, the elongation at break was 370.75%, and the toughness modulus was 18.45 MJ m-3. The AgNPs-rGO-TPU sensing fibers effectively detect external stimuli, exhibiting high sensitivity over a wide strain range (gauge factor is 4.25 below 5% strain, 24.79 in the 5%-25% strain range, 23.06 in the 25%-80% strain range, and 21.32 in the 80%-110% strain range), with a conductivity of 163.17 ms·cm-1. They can stably recognize movements and physiological signals from various parts of the human body, showing good application prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
C60fullerene improves the contractile activity of the injured ratmuscle gastrocnemius. Metal chalcogenide quantum dots for photochemical and electrochemical hydrogen generation: recent advancements and technological challenges. Dexamethasone-loaded fibroin nanoparticles promote retinal reattachment in rats by regulating the Th17/Treg balance. Hydrophobic PU fabric with synergistic conductive networks for boosted high sensitivity, wide linear-range wearable strain sensor. Selective area molecular beam epitaxy of InSb on InP(111)B: from thin films to quantum nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1