细晶Mg-3Gd合金屈服点现象及高加工硬化响应的组织成因

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-26 DOI:10.1016/j.jmst.2024.12.008
Xuan Luo, Xianneng Wang, Yiping Xia, Guilin Wu, Yao Cheng, Tianbo Yu, Peijie Yan, Yunchang Xin, Xiaoxu Huang
{"title":"细晶Mg-3Gd合金屈服点现象及高加工硬化响应的组织成因","authors":"Xuan Luo, Xianneng Wang, Yiping Xia, Guilin Wu, Yao Cheng, Tianbo Yu, Peijie Yan, Yunchang Xin, Xiaoxu Huang","doi":"10.1016/j.jmst.2024.12.008","DOIUrl":null,"url":null,"abstract":"Mechanical properties of Mg-3Gd (wt.%) samples with average grain sizes ranging from 3 to 45 μm were characterized by room temperature tensile test. A reversal of the trade-off, simultaneously high yield strength and large tensile elongation, was observed in the fine-grained samples. The microstructures and hardening response were analyzed in terms of the viewpoint of strain evolution, including local strain evolution by tensile digital image correlation strain measurement, and lattice strain by using synchrotron-based in-situ high energy X-ray diffraction technique. The dislocation-based deformation mechanisms were investigated to underpin the microstructural origin of the yield point phenomenon and enhancement in work-hardening. The occurrence of the yield point phenomenon represented by a yield drop and propagation of the Lüders band is related to the absence of mobile dislocations at an early stage and to the slip transmission between the adjacent grain. The extraordinary work-hardening enhancement over an extended range can be ascribed mainly to the increases in dislocation multiplication and accumulation capabilities by the activation and interaction of multiple slip systems including &lt;<em>a</em>&gt; and &lt;<em>c</em>+<em>a</em>&gt; types. These results contribute to the design of strong and ductile Mg alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"3 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the microstructural origin of yield point phenomenon and high work-hardening response in fine-grained Mg-3Gd alloy\",\"authors\":\"Xuan Luo, Xianneng Wang, Yiping Xia, Guilin Wu, Yao Cheng, Tianbo Yu, Peijie Yan, Yunchang Xin, Xiaoxu Huang\",\"doi\":\"10.1016/j.jmst.2024.12.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical properties of Mg-3Gd (wt.%) samples with average grain sizes ranging from 3 to 45 μm were characterized by room temperature tensile test. A reversal of the trade-off, simultaneously high yield strength and large tensile elongation, was observed in the fine-grained samples. The microstructures and hardening response were analyzed in terms of the viewpoint of strain evolution, including local strain evolution by tensile digital image correlation strain measurement, and lattice strain by using synchrotron-based in-situ high energy X-ray diffraction technique. The dislocation-based deformation mechanisms were investigated to underpin the microstructural origin of the yield point phenomenon and enhancement in work-hardening. The occurrence of the yield point phenomenon represented by a yield drop and propagation of the Lüders band is related to the absence of mobile dislocations at an early stage and to the slip transmission between the adjacent grain. The extraordinary work-hardening enhancement over an extended range can be ascribed mainly to the increases in dislocation multiplication and accumulation capabilities by the activation and interaction of multiple slip systems including &lt;<em>a</em>&gt; and &lt;<em>c</em>+<em>a</em>&gt; types. These results contribute to the design of strong and ductile Mg alloys.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.12.008\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用室温拉伸试验对平均晶粒尺寸为3 ~ 45 μm的Mg-3Gd (wt.%)试样的力学性能进行了表征。相反的权衡,同时高屈服强度和大拉伸伸长率,观察到细粒样品。从应变演化的角度分析了微观组织和硬化响应,包括通过拉伸数字图像相关应变测量的局部应变演化和基于同步辐射的原位高能x射线衍射技术的点阵应变。研究了基于位错的变形机制,以支持屈服点现象和加工硬化强化的微观组织起源。以屈服下降和l德斯带扩展为代表的屈服点现象的出现与早期没有移动位错和相邻晶粒之间的滑移传递有关。在更大范围内的特殊加工硬化增强主要归因于位错倍增和积累能力的增加,这是由多个滑移系统的激活和相互作用引起的,包括<;和& lt; c + a>类型。这些结果有助于设计强韧性镁合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the microstructural origin of yield point phenomenon and high work-hardening response in fine-grained Mg-3Gd alloy
Mechanical properties of Mg-3Gd (wt.%) samples with average grain sizes ranging from 3 to 45 μm were characterized by room temperature tensile test. A reversal of the trade-off, simultaneously high yield strength and large tensile elongation, was observed in the fine-grained samples. The microstructures and hardening response were analyzed in terms of the viewpoint of strain evolution, including local strain evolution by tensile digital image correlation strain measurement, and lattice strain by using synchrotron-based in-situ high energy X-ray diffraction technique. The dislocation-based deformation mechanisms were investigated to underpin the microstructural origin of the yield point phenomenon and enhancement in work-hardening. The occurrence of the yield point phenomenon represented by a yield drop and propagation of the Lüders band is related to the absence of mobile dislocations at an early stage and to the slip transmission between the adjacent grain. The extraordinary work-hardening enhancement over an extended range can be ascribed mainly to the increases in dislocation multiplication and accumulation capabilities by the activation and interaction of multiple slip systems including <a> and <c+a> types. These results contribute to the design of strong and ductile Mg alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1