Xuan Luo, Xianneng Wang, Yiping Xia, Guilin Wu, Yao Cheng, Tianbo Yu, Peijie Yan, Yunchang Xin, Xiaoxu Huang
{"title":"细晶Mg-3Gd合金屈服点现象及高加工硬化响应的组织成因","authors":"Xuan Luo, Xianneng Wang, Yiping Xia, Guilin Wu, Yao Cheng, Tianbo Yu, Peijie Yan, Yunchang Xin, Xiaoxu Huang","doi":"10.1016/j.jmst.2024.12.008","DOIUrl":null,"url":null,"abstract":"Mechanical properties of Mg-3Gd (wt.%) samples with average grain sizes ranging from 3 to 45 μm were characterized by room temperature tensile test. A reversal of the trade-off, simultaneously high yield strength and large tensile elongation, was observed in the fine-grained samples. The microstructures and hardening response were analyzed in terms of the viewpoint of strain evolution, including local strain evolution by tensile digital image correlation strain measurement, and lattice strain by using synchrotron-based in-situ high energy X-ray diffraction technique. The dislocation-based deformation mechanisms were investigated to underpin the microstructural origin of the yield point phenomenon and enhancement in work-hardening. The occurrence of the yield point phenomenon represented by a yield drop and propagation of the Lüders band is related to the absence of mobile dislocations at an early stage and to the slip transmission between the adjacent grain. The extraordinary work-hardening enhancement over an extended range can be ascribed mainly to the increases in dislocation multiplication and accumulation capabilities by the activation and interaction of multiple slip systems including <<em>a</em>> and <<em>c</em>+<em>a</em>> types. These results contribute to the design of strong and ductile Mg alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"3 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the microstructural origin of yield point phenomenon and high work-hardening response in fine-grained Mg-3Gd alloy\",\"authors\":\"Xuan Luo, Xianneng Wang, Yiping Xia, Guilin Wu, Yao Cheng, Tianbo Yu, Peijie Yan, Yunchang Xin, Xiaoxu Huang\",\"doi\":\"10.1016/j.jmst.2024.12.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical properties of Mg-3Gd (wt.%) samples with average grain sizes ranging from 3 to 45 μm were characterized by room temperature tensile test. A reversal of the trade-off, simultaneously high yield strength and large tensile elongation, was observed in the fine-grained samples. The microstructures and hardening response were analyzed in terms of the viewpoint of strain evolution, including local strain evolution by tensile digital image correlation strain measurement, and lattice strain by using synchrotron-based in-situ high energy X-ray diffraction technique. The dislocation-based deformation mechanisms were investigated to underpin the microstructural origin of the yield point phenomenon and enhancement in work-hardening. The occurrence of the yield point phenomenon represented by a yield drop and propagation of the Lüders band is related to the absence of mobile dislocations at an early stage and to the slip transmission between the adjacent grain. The extraordinary work-hardening enhancement over an extended range can be ascribed mainly to the increases in dislocation multiplication and accumulation capabilities by the activation and interaction of multiple slip systems including <<em>a</em>> and <<em>c</em>+<em>a</em>> types. These results contribute to the design of strong and ductile Mg alloys.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.12.008\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
采用室温拉伸试验对平均晶粒尺寸为3 ~ 45 μm的Mg-3Gd (wt.%)试样的力学性能进行了表征。相反的权衡,同时高屈服强度和大拉伸伸长率,观察到细粒样品。从应变演化的角度分析了微观组织和硬化响应,包括通过拉伸数字图像相关应变测量的局部应变演化和基于同步辐射的原位高能x射线衍射技术的点阵应变。研究了基于位错的变形机制,以支持屈服点现象和加工硬化强化的微观组织起源。以屈服下降和l德斯带扩展为代表的屈服点现象的出现与早期没有移动位错和相邻晶粒之间的滑移传递有关。在更大范围内的特殊加工硬化增强主要归因于位错倍增和积累能力的增加,这是由多个滑移系统的激活和相互作用引起的,包括<;和& lt; c + a>类型。这些结果有助于设计强韧性镁合金。
On the microstructural origin of yield point phenomenon and high work-hardening response in fine-grained Mg-3Gd alloy
Mechanical properties of Mg-3Gd (wt.%) samples with average grain sizes ranging from 3 to 45 μm were characterized by room temperature tensile test. A reversal of the trade-off, simultaneously high yield strength and large tensile elongation, was observed in the fine-grained samples. The microstructures and hardening response were analyzed in terms of the viewpoint of strain evolution, including local strain evolution by tensile digital image correlation strain measurement, and lattice strain by using synchrotron-based in-situ high energy X-ray diffraction technique. The dislocation-based deformation mechanisms were investigated to underpin the microstructural origin of the yield point phenomenon and enhancement in work-hardening. The occurrence of the yield point phenomenon represented by a yield drop and propagation of the Lüders band is related to the absence of mobile dislocations at an early stage and to the slip transmission between the adjacent grain. The extraordinary work-hardening enhancement over an extended range can be ascribed mainly to the increases in dislocation multiplication and accumulation capabilities by the activation and interaction of multiple slip systems including <a> and <c+a> types. These results contribute to the design of strong and ductile Mg alloys.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.