mil - 88a衍生0D/1D/2D纳米复合材料面向宽带微波吸收的形貌工程

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-26 DOI:10.1016/j.jmst.2024.12.012
Jie Mei, Juhua Luo, Tianyi Zhao, Shenyu Jiang, Yuhan Wu, Ziyang Dai, Yu Xie
{"title":"mil - 88a衍生0D/1D/2D纳米复合材料面向宽带微波吸收的形貌工程","authors":"Jie Mei, Juhua Luo, Tianyi Zhao, Shenyu Jiang, Yuhan Wu, Ziyang Dai, Yu Xie","doi":"10.1016/j.jmst.2024.12.012","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) have been widely applied in the field of electromagnetic wave absorption (EMWA) on account of unique morphology, simple fabrication, and ultra-high porosity. Nevertheless, the facile method of protecting its structure from being destroyed remains challenging. Herein, we proposed a hydrothermal method combined with a carbonization strategy to construct the 0D/1D/2D Fe<sub>3</sub>C@NC@Mo<sub>2</sub>C/Fe<sub>3</sub>C composites. Owing to the incorporation of polydopamine (PDA), the carbon shell formed during high-temperature carbonization effectively protected the original MIL-88A rod-like structure, and the 2D Mo<sub>2</sub>C nano-sheets and 1D Fe<sub>3</sub>C nanoparticles were coated on the surface of 1D Fe<sub>3</sub>C nanorods. With the increase in carbonization temperature, the EMWA properties of the composites presented a trend of first increasing and then decreasing. Impressively, the composites (at 750 °C) exhibited praiseworthy EMWA performances with a minimum reflection loss value of −43.70 dB at 8.00 GHz, alongside a maximum effective absorption bandwidth of 6.08 GHz (11.20–17.28 GHz). Density functional theory calculations confirmed the distinctive charge distribution resulting from the heterointerface, which is beneficial to the polarization loss and conductive loss. As a result, the outstanding EMWA performance was credited to the distinctive hierarchical structure, appropriate impedance matching, numerous heterogeneous interfaces, and magnetic loss. Moreover, Radar cross-section calculations indicated that the composites have tremendous potential for practical application. Thus, this work may pave new avenues for designing high-performance and structure-controllable absorbing materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"62 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphology engineering of MIL-88A-derived 0D/1D/2D nanocomposites toward wideband microwave absorption\",\"authors\":\"Jie Mei, Juhua Luo, Tianyi Zhao, Shenyu Jiang, Yuhan Wu, Ziyang Dai, Yu Xie\",\"doi\":\"10.1016/j.jmst.2024.12.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-organic frameworks (MOFs) have been widely applied in the field of electromagnetic wave absorption (EMWA) on account of unique morphology, simple fabrication, and ultra-high porosity. Nevertheless, the facile method of protecting its structure from being destroyed remains challenging. Herein, we proposed a hydrothermal method combined with a carbonization strategy to construct the 0D/1D/2D Fe<sub>3</sub>C@NC@Mo<sub>2</sub>C/Fe<sub>3</sub>C composites. Owing to the incorporation of polydopamine (PDA), the carbon shell formed during high-temperature carbonization effectively protected the original MIL-88A rod-like structure, and the 2D Mo<sub>2</sub>C nano-sheets and 1D Fe<sub>3</sub>C nanoparticles were coated on the surface of 1D Fe<sub>3</sub>C nanorods. With the increase in carbonization temperature, the EMWA properties of the composites presented a trend of first increasing and then decreasing. Impressively, the composites (at 750 °C) exhibited praiseworthy EMWA performances with a minimum reflection loss value of −43.70 dB at 8.00 GHz, alongside a maximum effective absorption bandwidth of 6.08 GHz (11.20–17.28 GHz). Density functional theory calculations confirmed the distinctive charge distribution resulting from the heterointerface, which is beneficial to the polarization loss and conductive loss. As a result, the outstanding EMWA performance was credited to the distinctive hierarchical structure, appropriate impedance matching, numerous heterogeneous interfaces, and magnetic loss. Moreover, Radar cross-section calculations indicated that the composites have tremendous potential for practical application. Thus, this work may pave new avenues for designing high-performance and structure-controllable absorbing materials.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.12.012\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属有机骨架材料以其独特的形貌、制作简单、超高孔隙率等优点在电磁波吸收领域得到了广泛的应用。然而,保护其结构免受破坏的简单方法仍然具有挑战性。在此,我们提出了水热法结合碳化策略来构建0D/1D/2D Fe3C@NC@Mo2C/Fe3C复合材料。由于聚多巴胺(PDA)的掺入,高温碳化过程中形成的碳壳有效地保护了MIL-88A原有的棒状结构,并在1D Fe3C纳米棒表面包裹了2D Mo2C纳米片和1D Fe3C纳米颗粒。随着炭化温度的升高,复合材料的EMWA性能呈现先升高后降低的趋势。令人印象深刻的是,复合材料(750°C)表现出令人称赞的EMWA性能,在8.00 GHz时最小反射损耗值为- 43.70 dB,最大有效吸收带宽为6.08 GHz (11.20-17.28 GHz)。密度泛函理论计算证实了异质界面导致的特殊电荷分布,这有利于极化损耗和导电损耗的减小。因此,优异的EMWA性能归功于独特的分层结构、适当的阻抗匹配、众多的异质界面和磁损耗。雷达截面计算结果表明,该复合材料具有巨大的实际应用潜力。因此,这项工作可能为设计高性能和结构可控的吸波材料铺平新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphology engineering of MIL-88A-derived 0D/1D/2D nanocomposites toward wideband microwave absorption
Metal-organic frameworks (MOFs) have been widely applied in the field of electromagnetic wave absorption (EMWA) on account of unique morphology, simple fabrication, and ultra-high porosity. Nevertheless, the facile method of protecting its structure from being destroyed remains challenging. Herein, we proposed a hydrothermal method combined with a carbonization strategy to construct the 0D/1D/2D Fe3C@NC@Mo2C/Fe3C composites. Owing to the incorporation of polydopamine (PDA), the carbon shell formed during high-temperature carbonization effectively protected the original MIL-88A rod-like structure, and the 2D Mo2C nano-sheets and 1D Fe3C nanoparticles were coated on the surface of 1D Fe3C nanorods. With the increase in carbonization temperature, the EMWA properties of the composites presented a trend of first increasing and then decreasing. Impressively, the composites (at 750 °C) exhibited praiseworthy EMWA performances with a minimum reflection loss value of −43.70 dB at 8.00 GHz, alongside a maximum effective absorption bandwidth of 6.08 GHz (11.20–17.28 GHz). Density functional theory calculations confirmed the distinctive charge distribution resulting from the heterointerface, which is beneficial to the polarization loss and conductive loss. As a result, the outstanding EMWA performance was credited to the distinctive hierarchical structure, appropriate impedance matching, numerous heterogeneous interfaces, and magnetic loss. Moreover, Radar cross-section calculations indicated that the composites have tremendous potential for practical application. Thus, this work may pave new avenues for designing high-performance and structure-controllable absorbing materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1