MXene与聚合物的整合:释放电磁干扰屏蔽多功能复合材料的全部潜力

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-27 DOI:10.1016/j.jmst.2024.12.011
Meng Zhou, Shuo Zhang, Li Zhang, Ying Chen, Xinxin Sheng, Xinya Zhang
{"title":"MXene与聚合物的整合:释放电磁干扰屏蔽多功能复合材料的全部潜力","authors":"Meng Zhou, Shuo Zhang, Li Zhang, Ying Chen, Xinxin Sheng, Xinya Zhang","doi":"10.1016/j.jmst.2024.12.011","DOIUrl":null,"url":null,"abstract":"The traditional inflexible electromagnetic interference (EMI) shielding materials have poor adaptability to wearable and portable flexible electronic devices due to their shortcomings such as brittleness and difficulty in machinability. As an optimized alternative, the conductive polymer composites (CPCs) constructed by integrating MXene and polymer have become one of the most promising EMI shielding materials. To cope with the more harsh application conditions, the processing-structure-property relationship of MXene/polymer EMI shielding composites urgently needs to be clarified. In this review, the EMI shielding mechanism and theory of CPCs are first outlined. Then, the recent advances in processing strategies for MXene/polymer EMI shielding composites with different structures are comprehensively summarized, including layered structure, segregated structure, and porous structure. Next, the multifunctionality of MXene/polymer EMI shielding composites in hydrophobicity, flame retardancy, thermal conductivity, infrared thermal camouflage, electrothermal conversion, photothermal conversion, and sensing function, is systematically introduced. Finally, the prospects and challenges for the future development and application of multifunctional MXene/polymer EMI shielding composites are discussed. This review aims to put forward effective guidance for fabricating intelligent, adaptable, and integrated MXene/polymer EMI shielding composites, thus promoting the upgrading of advanced MXene-based CPCs.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"62 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of MXene and polymer: Unlocking the full potential of multifunctional composites for electromagnetic interference shielding\",\"authors\":\"Meng Zhou, Shuo Zhang, Li Zhang, Ying Chen, Xinxin Sheng, Xinya Zhang\",\"doi\":\"10.1016/j.jmst.2024.12.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional inflexible electromagnetic interference (EMI) shielding materials have poor adaptability to wearable and portable flexible electronic devices due to their shortcomings such as brittleness and difficulty in machinability. As an optimized alternative, the conductive polymer composites (CPCs) constructed by integrating MXene and polymer have become one of the most promising EMI shielding materials. To cope with the more harsh application conditions, the processing-structure-property relationship of MXene/polymer EMI shielding composites urgently needs to be clarified. In this review, the EMI shielding mechanism and theory of CPCs are first outlined. Then, the recent advances in processing strategies for MXene/polymer EMI shielding composites with different structures are comprehensively summarized, including layered structure, segregated structure, and porous structure. Next, the multifunctionality of MXene/polymer EMI shielding composites in hydrophobicity, flame retardancy, thermal conductivity, infrared thermal camouflage, electrothermal conversion, photothermal conversion, and sensing function, is systematically introduced. Finally, the prospects and challenges for the future development and application of multifunctional MXene/polymer EMI shielding composites are discussed. This review aims to put forward effective guidance for fabricating intelligent, adaptable, and integrated MXene/polymer EMI shielding composites, thus promoting the upgrading of advanced MXene-based CPCs.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.12.011\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的非柔性电磁干扰屏蔽材料由于易碎、难加工等缺点,对可穿戴、便携式柔性电子器件的适应性较差。作为一种优化的替代方案,MXene与聚合物相结合构建的导电聚合物复合材料(cpc)已成为最有前途的电磁干扰屏蔽材料之一。为了应对更为苛刻的应用条件,MXene/聚合物电磁干扰屏蔽复合材料的加工-结构-性能关系亟待澄清。本文首先综述了聚氯乙烯屏蔽电磁干扰的机理和原理。然后,对不同结构的MXene/聚合物电磁干扰屏蔽复合材料的制备策略进行了综述,包括层状结构、偏析结构和多孔结构。其次,系统介绍了MXene/聚合物电磁干扰屏蔽复合材料在疏水性、阻燃性、导热性、红外热伪装、电热转换、光热转换和传感功能等方面的多功能性。最后,讨论了多功能MXene/聚合物电磁干扰屏蔽复合材料未来发展和应用的前景和挑战。本文旨在为智能、自适应、集成的MXene/聚合物电磁干扰屏蔽复合材料的制备提供有效的指导,从而促进先进的MXene基cpc的升级换代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of MXene and polymer: Unlocking the full potential of multifunctional composites for electromagnetic interference shielding
The traditional inflexible electromagnetic interference (EMI) shielding materials have poor adaptability to wearable and portable flexible electronic devices due to their shortcomings such as brittleness and difficulty in machinability. As an optimized alternative, the conductive polymer composites (CPCs) constructed by integrating MXene and polymer have become one of the most promising EMI shielding materials. To cope with the more harsh application conditions, the processing-structure-property relationship of MXene/polymer EMI shielding composites urgently needs to be clarified. In this review, the EMI shielding mechanism and theory of CPCs are first outlined. Then, the recent advances in processing strategies for MXene/polymer EMI shielding composites with different structures are comprehensively summarized, including layered structure, segregated structure, and porous structure. Next, the multifunctionality of MXene/polymer EMI shielding composites in hydrophobicity, flame retardancy, thermal conductivity, infrared thermal camouflage, electrothermal conversion, photothermal conversion, and sensing function, is systematically introduced. Finally, the prospects and challenges for the future development and application of multifunctional MXene/polymer EMI shielding composites are discussed. This review aims to put forward effective guidance for fabricating intelligent, adaptable, and integrated MXene/polymer EMI shielding composites, thus promoting the upgrading of advanced MXene-based CPCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1