在一种完全再结晶的超轻钢中,丰富的B2纳米沉淀介导了高强度和大塑性

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-27 DOI:10.1016/j.jmst.2024.12.013
Xiaoxiao Geng, Junheng Gao, Yuhe Huang, Shuize Wang, Haitao Zhao, Honghui Wu, Chaolei Zhang, Xinping Mao
{"title":"在一种完全再结晶的超轻钢中,丰富的B2纳米沉淀介导了高强度和大塑性","authors":"Xiaoxiao Geng, Junheng Gao, Yuhe Huang, Shuize Wang, Haitao Zhao, Honghui Wu, Chaolei Zhang, Xinping Mao","doi":"10.1016/j.jmst.2024.12.013","DOIUrl":null,"url":null,"abstract":"High-strength Fe-Mn-Al-C-Ni low-density steels are highly desirable in lightweight transportation, safe infrastructure, and advanced energy applications. However, these steels generally suffer from limited ductility owing to the formation of coarse B2 particles at grain boundaries. In this study, we proposed a strategy to introduce copious intragranular B2 nanoprecipitates within fully-recrystallized fine austenitic grains in a Fe-26Mn-11Al-0.9C-5Ni ultralight steel by a simple cold rolling and annealing process. Compared with steel where B2 particles are mainly distributed at grain boundaries, the yield strength and ultimate tensile strength of this steel increased from 768 MPa and 1100 MPa to 954 MPa and 1337 MPa, respectively, whereas the total elongation increased from 38% to 50%. The higher yield strength was primarily due to the synergistic strengthening effect of intragranular B2 nanoprecipitates and grain refinement. The excellent ductility and sustained work hardening were mainly attributed to the strong dislocation storage capability mediated by the intragranular B2 nanoprecipitates and the greater dynamic slip band refinement strengthening effect. Hence, the achievement of copious intragranular B2 nanoprecipitation in fully recrystallized ultralight steel offers an effective pathway for developing lightweight materials with high strength and large ductility.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"310 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copious intragranular B2 nanoprecipitation mediated high strength and large ductility in a fully recrystallized ultralight steel\",\"authors\":\"Xiaoxiao Geng, Junheng Gao, Yuhe Huang, Shuize Wang, Haitao Zhao, Honghui Wu, Chaolei Zhang, Xinping Mao\",\"doi\":\"10.1016/j.jmst.2024.12.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-strength Fe-Mn-Al-C-Ni low-density steels are highly desirable in lightweight transportation, safe infrastructure, and advanced energy applications. However, these steels generally suffer from limited ductility owing to the formation of coarse B2 particles at grain boundaries. In this study, we proposed a strategy to introduce copious intragranular B2 nanoprecipitates within fully-recrystallized fine austenitic grains in a Fe-26Mn-11Al-0.9C-5Ni ultralight steel by a simple cold rolling and annealing process. Compared with steel where B2 particles are mainly distributed at grain boundaries, the yield strength and ultimate tensile strength of this steel increased from 768 MPa and 1100 MPa to 954 MPa and 1337 MPa, respectively, whereas the total elongation increased from 38% to 50%. The higher yield strength was primarily due to the synergistic strengthening effect of intragranular B2 nanoprecipitates and grain refinement. The excellent ductility and sustained work hardening were mainly attributed to the strong dislocation storage capability mediated by the intragranular B2 nanoprecipitates and the greater dynamic slip band refinement strengthening effect. Hence, the achievement of copious intragranular B2 nanoprecipitation in fully recrystallized ultralight steel offers an effective pathway for developing lightweight materials with high strength and large ductility.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"310 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.12.013\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高强度Fe-Mn-Al-C-Ni低密度钢在轻型运输、安全基础设施和先进能源应用中非常理想。然而,由于在晶界处形成了粗糙的B2颗粒,这些钢通常具有有限的延展性。在本研究中,我们提出了一种策略,通过简单的冷轧和退火工艺,在Fe-26Mn-11Al-0.9C-5Ni超轻钢的完全再结晶的细小奥氏体晶粒中引入大量的B2纳米沉淀。与B2颗粒主要分布在晶界处的钢相比,该钢的屈服强度和极限抗拉强度分别从768 MPa和1100 MPa提高到954 MPa和1337 MPa,总伸长率从38%提高到50%。较高的屈服强度主要是由于B2颗粒内纳米沉淀物和晶粒细化的协同强化作用。优异的延展性和持续的加工硬化主要是由于B2纳米颗粒在晶内具有较强的位错储存能力和较大的动态滑移带细化强化效果。因此,在完全再结晶的超轻钢中实现丰富的B2颗粒内纳米沉淀,为开发高强度、大塑性的轻量化材料提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Copious intragranular B2 nanoprecipitation mediated high strength and large ductility in a fully recrystallized ultralight steel
High-strength Fe-Mn-Al-C-Ni low-density steels are highly desirable in lightweight transportation, safe infrastructure, and advanced energy applications. However, these steels generally suffer from limited ductility owing to the formation of coarse B2 particles at grain boundaries. In this study, we proposed a strategy to introduce copious intragranular B2 nanoprecipitates within fully-recrystallized fine austenitic grains in a Fe-26Mn-11Al-0.9C-5Ni ultralight steel by a simple cold rolling and annealing process. Compared with steel where B2 particles are mainly distributed at grain boundaries, the yield strength and ultimate tensile strength of this steel increased from 768 MPa and 1100 MPa to 954 MPa and 1337 MPa, respectively, whereas the total elongation increased from 38% to 50%. The higher yield strength was primarily due to the synergistic strengthening effect of intragranular B2 nanoprecipitates and grain refinement. The excellent ductility and sustained work hardening were mainly attributed to the strong dislocation storage capability mediated by the intragranular B2 nanoprecipitates and the greater dynamic slip band refinement strengthening effect. Hence, the achievement of copious intragranular B2 nanoprecipitation in fully recrystallized ultralight steel offers an effective pathway for developing lightweight materials with high strength and large ductility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1