{"title":"四旋度界面问题的非拟合有限元法","authors":"Hailong Guo, Mingyan Zhang, Qian Zhang, Zhimin Zhang","doi":"10.1007/s10444-024-10213-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a novel unfitted finite element method to solve the quad-curl interface problem. We adapt Nitsche’s method for <span>\\({\\operatorname {curl}}{\\operatorname {curl}}\\)</span>-conforming elements and double the degrees of freedom on interface elements. To ensure stability, we incorporate ghost penalty terms and a discrete divergence-free term. We establish the well-posedness of our method and demonstrate an optimal error bound in the discrete energy norm. We also analyze the stiffness matrix’s condition number. Our numerical tests back up our theory on convergence rates and condition numbers.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unfitted finite element method for the quad-curl interface problem\",\"authors\":\"Hailong Guo, Mingyan Zhang, Qian Zhang, Zhimin Zhang\",\"doi\":\"10.1007/s10444-024-10213-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a novel unfitted finite element method to solve the quad-curl interface problem. We adapt Nitsche’s method for <span>\\\\({\\\\operatorname {curl}}{\\\\operatorname {curl}}\\\\)</span>-conforming elements and double the degrees of freedom on interface elements. To ensure stability, we incorporate ghost penalty terms and a discrete divergence-free term. We establish the well-posedness of our method and demonstrate an optimal error bound in the discrete energy norm. We also analyze the stiffness matrix’s condition number. Our numerical tests back up our theory on convergence rates and condition numbers.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10213-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10213-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Unfitted finite element method for the quad-curl interface problem
In this paper, we introduce a novel unfitted finite element method to solve the quad-curl interface problem. We adapt Nitsche’s method for \({\operatorname {curl}}{\operatorname {curl}}\)-conforming elements and double the degrees of freedom on interface elements. To ensure stability, we incorporate ghost penalty terms and a discrete divergence-free term. We establish the well-posedness of our method and demonstrate an optimal error bound in the discrete energy norm. We also analyze the stiffness matrix’s condition number. Our numerical tests back up our theory on convergence rates and condition numbers.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.