微分隐私线性回归的迁移学习

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-12-28 DOI:10.1007/s40747-024-01759-8
Yiming Hou, Yunquan Song, Zhijian Wang
{"title":"微分隐私线性回归的迁移学习","authors":"Yiming Hou, Yunquan Song, Zhijian Wang","doi":"10.1007/s40747-024-01759-8","DOIUrl":null,"url":null,"abstract":"<p>Transfer learning, as a machine learning approach to enhance model generalization, has found widespread applications across various domains. However, the risk of privacy leakage during the transfer process remains a crucial consideration. Differential privacy, with its rigorous mathematical foundations, has been proven to offer consistent and robust privacy protection. This study delves into the problem of linear regression transfer learning under differential privacy and, on this basis, proposes a novel strategy incorporating prior information as a constraint to further enhance model performance and stability. In scenarios where the transferable source is known, a two-step transfer learning algorithm incorporating prior information is proposed. This approach leverages prior knowledge to effectively constrain the model parameters, ensuring that the solution space remains reasonable throughout the transfer process. For cases where transferable sources are unknown, a non-algorithmic, cross-validation-based method for transferable source detection is introduced to mitigate adverse impacts stemming from non-informative sources. The effectiveness of the proposed algorithms is validated through simulations and real-world data experiments.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"146 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning for linear regression with differential privacy\",\"authors\":\"Yiming Hou, Yunquan Song, Zhijian Wang\",\"doi\":\"10.1007/s40747-024-01759-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transfer learning, as a machine learning approach to enhance model generalization, has found widespread applications across various domains. However, the risk of privacy leakage during the transfer process remains a crucial consideration. Differential privacy, with its rigorous mathematical foundations, has been proven to offer consistent and robust privacy protection. This study delves into the problem of linear regression transfer learning under differential privacy and, on this basis, proposes a novel strategy incorporating prior information as a constraint to further enhance model performance and stability. In scenarios where the transferable source is known, a two-step transfer learning algorithm incorporating prior information is proposed. This approach leverages prior knowledge to effectively constrain the model parameters, ensuring that the solution space remains reasonable throughout the transfer process. For cases where transferable sources are unknown, a non-algorithmic, cross-validation-based method for transferable source detection is introduced to mitigate adverse impacts stemming from non-informative sources. The effectiveness of the proposed algorithms is validated through simulations and real-world data experiments.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01759-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01759-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

迁移学习作为一种增强模型泛化的机器学习方法,已经在各个领域得到了广泛的应用。然而,在传输过程中隐私泄露的风险仍然是一个至关重要的考虑因素。差分隐私,其严格的数学基础,已被证明提供一致和强大的隐私保护。本文研究了差分隐私下的线性回归迁移学习问题,并在此基础上提出了一种将先验信息作为约束的新策略,以进一步提高模型的性能和稳定性。在可转移源已知的情况下,提出了一种包含先验信息的两步迁移学习算法。该方法利用先验知识有效地约束模型参数,确保在整个迁移过程中解空间保持合理。对于可转移源未知的情况,引入了一种非算法、基于交叉验证的可转移源检测方法,以减轻来自非信息源的不利影响。通过仿真和实际数据实验验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer learning for linear regression with differential privacy

Transfer learning, as a machine learning approach to enhance model generalization, has found widespread applications across various domains. However, the risk of privacy leakage during the transfer process remains a crucial consideration. Differential privacy, with its rigorous mathematical foundations, has been proven to offer consistent and robust privacy protection. This study delves into the problem of linear regression transfer learning under differential privacy and, on this basis, proposes a novel strategy incorporating prior information as a constraint to further enhance model performance and stability. In scenarios where the transferable source is known, a two-step transfer learning algorithm incorporating prior information is proposed. This approach leverages prior knowledge to effectively constrain the model parameters, ensuring that the solution space remains reasonable throughout the transfer process. For cases where transferable sources are unknown, a non-algorithmic, cross-validation-based method for transferable source detection is introduced to mitigate adverse impacts stemming from non-informative sources. The effectiveness of the proposed algorithms is validated through simulations and real-world data experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction Control strategy of robotic manipulator based on multi-task reinforcement learning Explainable and secure framework for autism prediction using multimodal eye tracking and kinematic data A novel three-way distance-based fuzzy large margin distribution machine for imbalance classification Chaos-enhanced metaheuristics: classification, comparison, and convergence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1