基于自监督的特征协方差零空间训练网络增量学习

Shipeng Wang;Xiaorong Li;Jian Sun;Zongben Xu
{"title":"基于自监督的特征协方差零空间训练网络增量学习","authors":"Shipeng Wang;Xiaorong Li;Jian Sun;Zongben Xu","doi":"10.1109/TPAMI.2024.3522258","DOIUrl":null,"url":null,"abstract":"In the context of incremental learning, a network is sequentially trained on a stream of tasks, where data from previous tasks are particularly assumed to be inaccessible. The major challenge is how to overcome the stability-plasticity dilemma, i.e., learning knowledge from new tasks without forgetting the knowledge of previous tasks. To this end, we propose two mathematical conditions for guaranteeing network stability and plasticity with theoretical analysis. The conditions demonstrate that we can restrict the parameter update in the null space of uncentered feature covariance at each linear layer to overcome the stability-plasticity dilemma, which can be realized by layerwise projecting gradient into the null space. Inspired by it, we develop two algorithms, dubbed Adam-NSCL and Adam-SFCL respectively, for incremental learning. Adam-NSCL and Adam-SFCL provide different ways to compute the projection matrix. The projection matrix in Adam-NSCL is constructed by singular vectors associated with the smallest singular values of the uncentered feature covariance matrix, while the projection matrix in Adam-SFCL is constructed by all singular vectors associated with adaptive scaling factors. Additionally, we explore adopting self-supervised techniques, including self-supervised label augmentation and a newly proposed contrastive loss, to improve the performance of incremental learning. These self-supervised techniques are orthogonal to Adam-NSCL and Adam-SFCL and can be incorporated with them seamlessly, leading to Adam-NSCL-SSL and Adam-SFCL-SSL respectively. The proposed algorithms are applied to task-incremental and class-incremental learning on various benchmark datasets with multiple backbones, and the results show that they outperform the compared incremental learning methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2563-2580"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training Networks in Null Space of Feature Covariance With Self-Supervision for Incremental Learning\",\"authors\":\"Shipeng Wang;Xiaorong Li;Jian Sun;Zongben Xu\",\"doi\":\"10.1109/TPAMI.2024.3522258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of incremental learning, a network is sequentially trained on a stream of tasks, where data from previous tasks are particularly assumed to be inaccessible. The major challenge is how to overcome the stability-plasticity dilemma, i.e., learning knowledge from new tasks without forgetting the knowledge of previous tasks. To this end, we propose two mathematical conditions for guaranteeing network stability and plasticity with theoretical analysis. The conditions demonstrate that we can restrict the parameter update in the null space of uncentered feature covariance at each linear layer to overcome the stability-plasticity dilemma, which can be realized by layerwise projecting gradient into the null space. Inspired by it, we develop two algorithms, dubbed Adam-NSCL and Adam-SFCL respectively, for incremental learning. Adam-NSCL and Adam-SFCL provide different ways to compute the projection matrix. The projection matrix in Adam-NSCL is constructed by singular vectors associated with the smallest singular values of the uncentered feature covariance matrix, while the projection matrix in Adam-SFCL is constructed by all singular vectors associated with adaptive scaling factors. Additionally, we explore adopting self-supervised techniques, including self-supervised label augmentation and a newly proposed contrastive loss, to improve the performance of incremental learning. These self-supervised techniques are orthogonal to Adam-NSCL and Adam-SFCL and can be incorporated with them seamlessly, leading to Adam-NSCL-SSL and Adam-SFCL-SSL respectively. The proposed algorithms are applied to task-incremental and class-incremental learning on various benchmark datasets with multiple backbones, and the results show that they outperform the compared incremental learning methods.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 4\",\"pages\":\"2563-2580\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816176/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816176/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training Networks in Null Space of Feature Covariance With Self-Supervision for Incremental Learning
In the context of incremental learning, a network is sequentially trained on a stream of tasks, where data from previous tasks are particularly assumed to be inaccessible. The major challenge is how to overcome the stability-plasticity dilemma, i.e., learning knowledge from new tasks without forgetting the knowledge of previous tasks. To this end, we propose two mathematical conditions for guaranteeing network stability and plasticity with theoretical analysis. The conditions demonstrate that we can restrict the parameter update in the null space of uncentered feature covariance at each linear layer to overcome the stability-plasticity dilemma, which can be realized by layerwise projecting gradient into the null space. Inspired by it, we develop two algorithms, dubbed Adam-NSCL and Adam-SFCL respectively, for incremental learning. Adam-NSCL and Adam-SFCL provide different ways to compute the projection matrix. The projection matrix in Adam-NSCL is constructed by singular vectors associated with the smallest singular values of the uncentered feature covariance matrix, while the projection matrix in Adam-SFCL is constructed by all singular vectors associated with adaptive scaling factors. Additionally, we explore adopting self-supervised techniques, including self-supervised label augmentation and a newly proposed contrastive loss, to improve the performance of incremental learning. These self-supervised techniques are orthogonal to Adam-NSCL and Adam-SFCL and can be incorporated with them seamlessly, leading to Adam-NSCL-SSL and Adam-SFCL-SSL respectively. The proposed algorithms are applied to task-incremental and class-incremental learning on various benchmark datasets with multiple backbones, and the results show that they outperform the compared incremental learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1