Yuyang Ma , Jie Li , Jianxi Huang , Anne Gobin , Xuecao Li , Wenqi Liu , Haixiang Guan , Nadezhda N. Voropay , Chuli Hu
{"title":"物候变化对地表温度的生物物理效应对玉米生长的影响","authors":"Yuyang Ma , Jie Li , Jianxi Huang , Anne Gobin , Xuecao Li , Wenqi Liu , Haixiang Guan , Nadezhda N. Voropay , Chuli Hu","doi":"10.1016/j.agrformet.2024.110373","DOIUrl":null,"url":null,"abstract":"<div><div>In the last two decades, rapid corn expansion has significantly impacted local and regional climates in Northeastern China. However, its climatic effects and underlying biophysical mechanisms have rarely been investigated, particularly in accurately describing the changes in surface physiological structure throughout different phenological stages. This study utilized remote sensing observations and the pair-wise comparison approach to examine land surface temperature (LST) change associated with corn expansion at various phenological stages and whole growth seasons, respectively. We then employed the temperature response model to decompose and quantify the LST changes into radiative processes (albedo) and non-radiative processes (i.e., evapotranspiration and turbulent heat exchange). This study indicated that, except for soybean, the mean LST changes (ΔMean_LST) induced by corn expansion initially decreased and subsequently increased with the phenology shifts. Specifically, the potential warming effect was pronounced during three-leaves (EMV3) to seven-leaves stage (V7) and V7 to jointing date (JD), with the largest warming in Mean_LST occurring when corns were converted into trees (1.24±0.43 K) (mean ± 95 % confidence level) (0.93±0.29 K), followed by grass (0.47±0.37 K) (0.43±0.31 K), rice (0.46±0.23 K) (0.31±0.22 K), wetlands (0.16±0.21 K) (0.15±0.34), respectively. EMV3 to JD dominated the ΔMean_LST for the whole growth season, potentially warming the Mean_LST when trees, grass, rice, and wetlands converted to corn, while cooling the Mean_LST when soybeans converted to corn. Furthermore, The effect of phenological stages on LST varies with latitude. For example, during V7 to JD and Milky date (MID) to Maturity date (MD), the non-radiative warming effect of wetland conversion surpassed that of rice conversion as latitude increased (44°N-47°N). This indicates that the wetland conversion causes intensified warming at high latitudes in these stages. Additionally, non-radiative processes, characterized by varying signs and magnitudes, dominated the LST response to corn expansion. Overall, this study comprehensively investigated the ΔLST of corn expansion at various phenological stages and latitudes through the biophysical mechanism, which could be beneficial in developing adaptive and mitigative agricultural management strategies for climate warming in Northeast China.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"362 ","pages":"Article 110373"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The biophysical effects of phenological shifts impact land surface temperature for corn expansion in Northeastern China\",\"authors\":\"Yuyang Ma , Jie Li , Jianxi Huang , Anne Gobin , Xuecao Li , Wenqi Liu , Haixiang Guan , Nadezhda N. Voropay , Chuli Hu\",\"doi\":\"10.1016/j.agrformet.2024.110373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the last two decades, rapid corn expansion has significantly impacted local and regional climates in Northeastern China. However, its climatic effects and underlying biophysical mechanisms have rarely been investigated, particularly in accurately describing the changes in surface physiological structure throughout different phenological stages. This study utilized remote sensing observations and the pair-wise comparison approach to examine land surface temperature (LST) change associated with corn expansion at various phenological stages and whole growth seasons, respectively. We then employed the temperature response model to decompose and quantify the LST changes into radiative processes (albedo) and non-radiative processes (i.e., evapotranspiration and turbulent heat exchange). This study indicated that, except for soybean, the mean LST changes (ΔMean_LST) induced by corn expansion initially decreased and subsequently increased with the phenology shifts. Specifically, the potential warming effect was pronounced during three-leaves (EMV3) to seven-leaves stage (V7) and V7 to jointing date (JD), with the largest warming in Mean_LST occurring when corns were converted into trees (1.24±0.43 K) (mean ± 95 % confidence level) (0.93±0.29 K), followed by grass (0.47±0.37 K) (0.43±0.31 K), rice (0.46±0.23 K) (0.31±0.22 K), wetlands (0.16±0.21 K) (0.15±0.34), respectively. EMV3 to JD dominated the ΔMean_LST for the whole growth season, potentially warming the Mean_LST when trees, grass, rice, and wetlands converted to corn, while cooling the Mean_LST when soybeans converted to corn. Furthermore, The effect of phenological stages on LST varies with latitude. For example, during V7 to JD and Milky date (MID) to Maturity date (MD), the non-radiative warming effect of wetland conversion surpassed that of rice conversion as latitude increased (44°N-47°N). This indicates that the wetland conversion causes intensified warming at high latitudes in these stages. Additionally, non-radiative processes, characterized by varying signs and magnitudes, dominated the LST response to corn expansion. Overall, this study comprehensively investigated the ΔLST of corn expansion at various phenological stages and latitudes through the biophysical mechanism, which could be beneficial in developing adaptive and mitigative agricultural management strategies for climate warming in Northeast China.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":\"362 \",\"pages\":\"Article 110373\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192324004866\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324004866","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
The biophysical effects of phenological shifts impact land surface temperature for corn expansion in Northeastern China
In the last two decades, rapid corn expansion has significantly impacted local and regional climates in Northeastern China. However, its climatic effects and underlying biophysical mechanisms have rarely been investigated, particularly in accurately describing the changes in surface physiological structure throughout different phenological stages. This study utilized remote sensing observations and the pair-wise comparison approach to examine land surface temperature (LST) change associated with corn expansion at various phenological stages and whole growth seasons, respectively. We then employed the temperature response model to decompose and quantify the LST changes into radiative processes (albedo) and non-radiative processes (i.e., evapotranspiration and turbulent heat exchange). This study indicated that, except for soybean, the mean LST changes (ΔMean_LST) induced by corn expansion initially decreased and subsequently increased with the phenology shifts. Specifically, the potential warming effect was pronounced during three-leaves (EMV3) to seven-leaves stage (V7) and V7 to jointing date (JD), with the largest warming in Mean_LST occurring when corns were converted into trees (1.24±0.43 K) (mean ± 95 % confidence level) (0.93±0.29 K), followed by grass (0.47±0.37 K) (0.43±0.31 K), rice (0.46±0.23 K) (0.31±0.22 K), wetlands (0.16±0.21 K) (0.15±0.34), respectively. EMV3 to JD dominated the ΔMean_LST for the whole growth season, potentially warming the Mean_LST when trees, grass, rice, and wetlands converted to corn, while cooling the Mean_LST when soybeans converted to corn. Furthermore, The effect of phenological stages on LST varies with latitude. For example, during V7 to JD and Milky date (MID) to Maturity date (MD), the non-radiative warming effect of wetland conversion surpassed that of rice conversion as latitude increased (44°N-47°N). This indicates that the wetland conversion causes intensified warming at high latitudes in these stages. Additionally, non-radiative processes, characterized by varying signs and magnitudes, dominated the LST response to corn expansion. Overall, this study comprehensively investigated the ΔLST of corn expansion at various phenological stages and latitudes through the biophysical mechanism, which could be beneficial in developing adaptive and mitigative agricultural management strategies for climate warming in Northeast China.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.