综合基准的计算工具,预测毒性动力学和物理化学性质的化学品

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-12-26 DOI:10.1186/s13321-024-00931-z
Domenico Gadaleta, Eva Serrano-Candelas, Rita Ortega-Vallbona, Erika Colombo, Marina Garcia de Lomana, Giada Biava, Pablo Aparicio-Sánchez, Alessandra Roncaglioni, Rafael Gozalbes, Emilio Benfenati
{"title":"综合基准的计算工具,预测毒性动力学和物理化学性质的化学品","authors":"Domenico Gadaleta,&nbsp;Eva Serrano-Candelas,&nbsp;Rita Ortega-Vallbona,&nbsp;Erika Colombo,&nbsp;Marina Garcia de Lomana,&nbsp;Giada Biava,&nbsp;Pablo Aparicio-Sánchez,&nbsp;Alessandra Roncaglioni,&nbsp;Rafael Gozalbes,&nbsp;Emilio Benfenati","doi":"10.1186/s13321-024-00931-z","DOIUrl":null,"url":null,"abstract":"<p>Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure–Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties. A total of 41 validation datasets were collected from the literature, curated and used for assessing the models’ external predictivity, emphasizing the performance of the models inside the applicability domain. Overall, the results confirmed the adequate predictive performance of the majority of the selected tools, with models for PC properties (R<sup>2</sup> average = 0.717) generally outperforming those for TK properties (R<sup>2</sup> average = 0.639 for regression, average balanced accuracy = 0.780 for classification). Notably, several of the tools evaluated exhibited good predictivity across different properties and were identified as recurring optimal choices. Moreover, a systematic analysis of the chemical space covered by the external validation datasets confirmed the validity of the collected results for relevant chemical categories (e.g., drugs and industrial chemicals), further increasing the confidence in the overall evaluation. The best performing models were ultimately suggested for each investigated property and proposed as robust computational tools for high-throughput assessment of highly relevant chemical properties.</p><p>The present manuscript provides an overview of the state-of-the-art available computational tools for predicting the PC and TK properties of chemicals. The results here offer valuable guidance to researchers, regulatory authorities, and the industry in identifying robust computational tools suitable for predicting relevant chemical properties in the context of chemical design, toxicity and environmental fate assessment.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00931-z","citationCount":"0","resultStr":"{\"title\":\"Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals\",\"authors\":\"Domenico Gadaleta,&nbsp;Eva Serrano-Candelas,&nbsp;Rita Ortega-Vallbona,&nbsp;Erika Colombo,&nbsp;Marina Garcia de Lomana,&nbsp;Giada Biava,&nbsp;Pablo Aparicio-Sánchez,&nbsp;Alessandra Roncaglioni,&nbsp;Rafael Gozalbes,&nbsp;Emilio Benfenati\",\"doi\":\"10.1186/s13321-024-00931-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure–Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties. A total of 41 validation datasets were collected from the literature, curated and used for assessing the models’ external predictivity, emphasizing the performance of the models inside the applicability domain. Overall, the results confirmed the adequate predictive performance of the majority of the selected tools, with models for PC properties (R<sup>2</sup> average = 0.717) generally outperforming those for TK properties (R<sup>2</sup> average = 0.639 for regression, average balanced accuracy = 0.780 for classification). Notably, several of the tools evaluated exhibited good predictivity across different properties and were identified as recurring optimal choices. Moreover, a systematic analysis of the chemical space covered by the external validation datasets confirmed the validity of the collected results for relevant chemical categories (e.g., drugs and industrial chemicals), further increasing the confidence in the overall evaluation. The best performing models were ultimately suggested for each investigated property and proposed as robust computational tools for high-throughput assessment of highly relevant chemical properties.</p><p>The present manuscript provides an overview of the state-of-the-art available computational tools for predicting the PC and TK properties of chemicals. The results here offer valuable guidance to researchers, regulatory authorities, and the industry in identifying robust computational tools suitable for predicting relevant chemical properties in the context of chemical design, toxicity and environmental fate assessment.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00931-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00931-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00931-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

确保化学品对环境和人类健康的安全性涉及评估物理化学(PC)和毒性动力学(TK)特性,这对吸收、分布、代谢、排泄和毒性(ADMET)至关重要。考虑到目前减少实验方法的趋势,特别是那些涉及动物实验的方法,计算方法在预测这些特性方面起着至关重要的作用。在本文中,选择了12个实现定量构效关系(QSAR)模型的软件工具来预测17个相关的PC和TK属性。从文献中收集了41个验证数据集,整理并用于评估模型的外部预测性,强调模型在适用性领域内的性能。总体而言,结果证实了大多数选择工具的足够预测性能,PC属性模型(R2平均= 0.717)通常优于TK属性模型(回归的R2平均= 0.639,分类的平均平衡精度= 0.780)。值得注意的是,评估的几个工具对不同的属性表现出良好的预测能力,并被确定为反复出现的最佳选择。此外,对外部验证数据集所涵盖的化学空间进行了系统分析,确认了收集的结果对相关化学类别(例如药物和工业化学品)的有效性,进一步增加了对总体评价的信心。最终为每个研究性质提出了最佳表现模型,并建议作为高通量评估高度相关化学性质的强大计算工具。目前的手稿提供了最先进的可用计算工具的概述,用于预测化学物质的PC和TK性质。研究结果为研究人员、监管机构和行业提供了有价值的指导,以确定适用于化学设计、毒性和环境命运评估背景下预测相关化学性质的强大计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals

Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure–Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties. A total of 41 validation datasets were collected from the literature, curated and used for assessing the models’ external predictivity, emphasizing the performance of the models inside the applicability domain. Overall, the results confirmed the adequate predictive performance of the majority of the selected tools, with models for PC properties (R2 average = 0.717) generally outperforming those for TK properties (R2 average = 0.639 for regression, average balanced accuracy = 0.780 for classification). Notably, several of the tools evaluated exhibited good predictivity across different properties and were identified as recurring optimal choices. Moreover, a systematic analysis of the chemical space covered by the external validation datasets confirmed the validity of the collected results for relevant chemical categories (e.g., drugs and industrial chemicals), further increasing the confidence in the overall evaluation. The best performing models were ultimately suggested for each investigated property and proposed as robust computational tools for high-throughput assessment of highly relevant chemical properties.

The present manuscript provides an overview of the state-of-the-art available computational tools for predicting the PC and TK properties of chemicals. The results here offer valuable guidance to researchers, regulatory authorities, and the industry in identifying robust computational tools suitable for predicting relevant chemical properties in the context of chemical design, toxicity and environmental fate assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
CardioGenAI: a machine learning-based framework for re-engineering drugs for reduced hERG liability Achieving well-informed decision-making in drug discovery: a comprehensive calibration study using neural network-based structure-activity models GNINA 1.3: the next increment in molecular docking with deep learning Syn-MolOpt: a synthesis planning-driven molecular optimization method using data-derived functional reaction templates Pretraining graph transformers with atom-in-a-molecule quantum properties for improved ADMET modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1