显式视图标签问题:多视图聚类的多层面互补研究

Chuanxing Geng;Aiyang Han;Songcan Chen
{"title":"显式视图标签问题:多视图聚类的多层面互补研究","authors":"Chuanxing Geng;Aiyang Han;Songcan Chen","doi":"10.1109/TPAMI.2024.3521478","DOIUrl":null,"url":null,"abstract":"Consistency and complementarity are two key ingredients for boosting multi-view clustering (MVC). Recently with the introduction of popular contrastive learning, the consistency learning of views has been further enhanced in MVC, leading to promising performance. However, by contrast, the complementarity has not received sufficient attention except just in the feature facet, where the Hilbert Schmidt Independence Criterion term or the independent encoder-decoder network is usually adopted to capture view-specific information. This motivates us to reconsider the complementarity learning of views comprehensively from multiple facets including the feature-, view-label- and contrast- facets, while maintaining the view consistency. We empirically find that all the facets contribute to the complementarity learning, especially the view-label facet, which is usually neglected by existing methods. Based on this, a simple yet effective <underline>M</u>ultifacet <underline>C</u>omplementarity learning framework for <underline>M</u>ulti-<underline>V</u>iew <underline>C</u>lustering (MCMVC) is naturally developed, which fuses multifacet complementarity information, especially explicitly embedding the view-label information. To our best knowledge, it is the first time to use view-labels explicitly to guide the complementarity learning of views. Compared with the SOTA baselines, MCMVC achieves remarkable improvements, e.g., by average margins over 5.00% and 7.00% respectively in complete and incomplete MVC settings on Caltech101-20 in terms of three evaluation metrics.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2520-2532"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit View-Labels Matter: A Multifacet Complementarity Study of Multi-View Clustering\",\"authors\":\"Chuanxing Geng;Aiyang Han;Songcan Chen\",\"doi\":\"10.1109/TPAMI.2024.3521478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consistency and complementarity are two key ingredients for boosting multi-view clustering (MVC). Recently with the introduction of popular contrastive learning, the consistency learning of views has been further enhanced in MVC, leading to promising performance. However, by contrast, the complementarity has not received sufficient attention except just in the feature facet, where the Hilbert Schmidt Independence Criterion term or the independent encoder-decoder network is usually adopted to capture view-specific information. This motivates us to reconsider the complementarity learning of views comprehensively from multiple facets including the feature-, view-label- and contrast- facets, while maintaining the view consistency. We empirically find that all the facets contribute to the complementarity learning, especially the view-label facet, which is usually neglected by existing methods. Based on this, a simple yet effective <underline>M</u>ultifacet <underline>C</u>omplementarity learning framework for <underline>M</u>ulti-<underline>V</u>iew <underline>C</u>lustering (MCMVC) is naturally developed, which fuses multifacet complementarity information, especially explicitly embedding the view-label information. To our best knowledge, it is the first time to use view-labels explicitly to guide the complementarity learning of views. Compared with the SOTA baselines, MCMVC achieves remarkable improvements, e.g., by average margins over 5.00% and 7.00% respectively in complete and incomplete MVC settings on Caltech101-20 in terms of three evaluation metrics.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 4\",\"pages\":\"2520-2532\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816579/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816579/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explicit View-Labels Matter: A Multifacet Complementarity Study of Multi-View Clustering
Consistency and complementarity are two key ingredients for boosting multi-view clustering (MVC). Recently with the introduction of popular contrastive learning, the consistency learning of views has been further enhanced in MVC, leading to promising performance. However, by contrast, the complementarity has not received sufficient attention except just in the feature facet, where the Hilbert Schmidt Independence Criterion term or the independent encoder-decoder network is usually adopted to capture view-specific information. This motivates us to reconsider the complementarity learning of views comprehensively from multiple facets including the feature-, view-label- and contrast- facets, while maintaining the view consistency. We empirically find that all the facets contribute to the complementarity learning, especially the view-label facet, which is usually neglected by existing methods. Based on this, a simple yet effective Multifacet Complementarity learning framework for Multi-View Clustering (MCMVC) is naturally developed, which fuses multifacet complementarity information, especially explicitly embedding the view-label information. To our best knowledge, it is the first time to use view-labels explicitly to guide the complementarity learning of views. Compared with the SOTA baselines, MCMVC achieves remarkable improvements, e.g., by average margins over 5.00% and 7.00% respectively in complete and incomplete MVC settings on Caltech101-20 in terms of three evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1