地膜覆氮激活黄土高原根际微生物硝化作用和异化态硝酸盐还原

Congwei Sun, Hui Wu, Subramaniam Gopalakrishnan, Enke Liu, Xurong Mei
{"title":"地膜覆氮激活黄土高原根际微生物硝化作用和异化态硝酸盐还原","authors":"Congwei Sun, Hui Wu, Subramaniam Gopalakrishnan, Enke Liu, Xurong Mei","doi":"10.1016/j.still.2024.106423","DOIUrl":null,"url":null,"abstract":"Plastic film mulching combined with nitrogen application is a prime chief strategy for enhancing maize yields in rain-fed agricultural areas. However, how the practice affects the productivity and functions of soil by altering nitrogen transformation mediated by rhizosphere microorganisms in the Loess Plateau, remains unclear. In this research, an 7-year field location experiment was conducted to ascertain the effects of plastic film mulching with nitrogen application (225 kg N ha<ce:sup loc=\"post\">−1</ce:sup>) on the rhizosphere microbial nitrogen transformation in a rain-fed maize field on the Loess Plateau. Plastic film mulching with nitrogen application reduced the pH value and also increased the abundance of microorganisms (e.g., <ce:italic>Nitrosospira</ce:italic>, <ce:italic>Halomonas</ce:italic>) and genes (e.g., <ce:italic>pmoB-amoB</ce:italic>, <ce:italic>hao</ce:italic>, <ce:italic>nirB</ce:italic>, and <ce:italic>nirD</ce:italic>) during the vegetative stage. This promoted nitrification and dissimilatory nitrate reduction to ammonium, which increased the content of inorganic nitrogen in the rhizosphere. During the reproductive stages, plastic flim mulching reduced the relative abundance of aerobic bacteria (e.g., <ce:italic>Skermanella</ce:italic>, <ce:italic>Sphingomonas</ce:italic>), and the ratio of (<ce:italic>nirK</ce:italic> + <ce:italic>nirS</ce:italic>) / <ce:italic>nosZ</ce:italic>, which inhibited denitrification and dinitrogen oxide emission potential. Overall, our findings highlight the feedback mechanism of soil nitrogen transformation to plastic film mulching with nitrogen application in the Loess Plateau, providing valuable insights for manipulating specific microorganisms to regulate nitrogen transformation and promoting the sustainability of soil ecosystems.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plastic film mulching with nitrogen application activates rhizosphere microbial nitrification and dissimilatory nitrate reduction in the Loess Plateau\",\"authors\":\"Congwei Sun, Hui Wu, Subramaniam Gopalakrishnan, Enke Liu, Xurong Mei\",\"doi\":\"10.1016/j.still.2024.106423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic film mulching combined with nitrogen application is a prime chief strategy for enhancing maize yields in rain-fed agricultural areas. However, how the practice affects the productivity and functions of soil by altering nitrogen transformation mediated by rhizosphere microorganisms in the Loess Plateau, remains unclear. In this research, an 7-year field location experiment was conducted to ascertain the effects of plastic film mulching with nitrogen application (225 kg N ha<ce:sup loc=\\\"post\\\">−1</ce:sup>) on the rhizosphere microbial nitrogen transformation in a rain-fed maize field on the Loess Plateau. Plastic film mulching with nitrogen application reduced the pH value and also increased the abundance of microorganisms (e.g., <ce:italic>Nitrosospira</ce:italic>, <ce:italic>Halomonas</ce:italic>) and genes (e.g., <ce:italic>pmoB-amoB</ce:italic>, <ce:italic>hao</ce:italic>, <ce:italic>nirB</ce:italic>, and <ce:italic>nirD</ce:italic>) during the vegetative stage. This promoted nitrification and dissimilatory nitrate reduction to ammonium, which increased the content of inorganic nitrogen in the rhizosphere. During the reproductive stages, plastic flim mulching reduced the relative abundance of aerobic bacteria (e.g., <ce:italic>Skermanella</ce:italic>, <ce:italic>Sphingomonas</ce:italic>), and the ratio of (<ce:italic>nirK</ce:italic> + <ce:italic>nirS</ce:italic>) / <ce:italic>nosZ</ce:italic>, which inhibited denitrification and dinitrogen oxide emission potential. Overall, our findings highlight the feedback mechanism of soil nitrogen transformation to plastic film mulching with nitrogen application in the Loess Plateau, providing valuable insights for manipulating specific microorganisms to regulate nitrogen transformation and promoting the sustainability of soil ecosystems.\",\"PeriodicalId\":501007,\"journal\":{\"name\":\"Soil and Tillage Research\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil and Tillage Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.still.2024.106423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Tillage Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.still.2024.106423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在雨养农业区,覆膜配施氮肥是提高玉米产量的主要策略。然而,这种做法如何通过改变黄土高原根际微生物介导的氮转化来影响土壤的生产力和功能尚不清楚。本研究通过为期7年的田间定位试验,研究了覆膜施氮(225 kg N ha−1)对黄土高原旱作玉米根际微生物氮转化的影响。覆盖地膜施氮降低了土壤的pH值,也增加了营养阶段微生物(如亚硝基螺旋体、盐单胞菌)和基因(如pmoB-amoB、hao、nirB和nirD)的丰度。这促进了硝化作用和异化硝态氮还原为铵态氮,从而增加了根际无机氮的含量。在繁殖阶段,地膜覆盖降低了好氧菌(Skermanella,鞘氨单胞菌)的相对丰度和(nirK + nirS) / nosZ的比值,从而抑制了反硝化作用和二氮氧化物排放势。综上所述,本研究揭示了黄土高原土壤氮素向地膜转化的反馈机制,为调控特定微生物调控氮素转化,促进土壤生态系统的可持续性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plastic film mulching with nitrogen application activates rhizosphere microbial nitrification and dissimilatory nitrate reduction in the Loess Plateau
Plastic film mulching combined with nitrogen application is a prime chief strategy for enhancing maize yields in rain-fed agricultural areas. However, how the practice affects the productivity and functions of soil by altering nitrogen transformation mediated by rhizosphere microorganisms in the Loess Plateau, remains unclear. In this research, an 7-year field location experiment was conducted to ascertain the effects of plastic film mulching with nitrogen application (225 kg N ha−1) on the rhizosphere microbial nitrogen transformation in a rain-fed maize field on the Loess Plateau. Plastic film mulching with nitrogen application reduced the pH value and also increased the abundance of microorganisms (e.g., Nitrosospira, Halomonas) and genes (e.g., pmoB-amoB, hao, nirB, and nirD) during the vegetative stage. This promoted nitrification and dissimilatory nitrate reduction to ammonium, which increased the content of inorganic nitrogen in the rhizosphere. During the reproductive stages, plastic flim mulching reduced the relative abundance of aerobic bacteria (e.g., Skermanella, Sphingomonas), and the ratio of (nirK + nirS) / nosZ, which inhibited denitrification and dinitrogen oxide emission potential. Overall, our findings highlight the feedback mechanism of soil nitrogen transformation to plastic film mulching with nitrogen application in the Loess Plateau, providing valuable insights for manipulating specific microorganisms to regulate nitrogen transformation and promoting the sustainability of soil ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conservation agriculture boosts topsoil organic matter by restoring free lipids and lignin phenols biomarkers in distinct fractions Mechanisms of cover crop-derived carbon sequestration in winter wheat fields: Insights from 13C labeling Nitrogen-rich roots regulate microbial- and plant-derived carbon in alkali-saline soil under land-use conversions in the Songnen Plain Field traffic loads on a silty farm site cause shifting and narrowing of soil pore size distribution Calcium lactate as a soil amendment: Mechanistic insights into its effect on salinity, alkalinity, and aggregation in saline-alkaline soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1