{"title":"真骨陶瓷/ I型胶原蛋白支架修复骨软骨缺损","authors":"Yuhan Jiang, Tenghai Li, Yingyue Lou, Bingzhang Liu, Yilin Liu, Tian Li, Duo Zhang","doi":"10.1007/s10856-024-06852-5","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the incidence of cartilage defects has increased dramatically, and its etiology is complex and varied. Osteochondritis dissecans (OCD), as one of the main etiologies, damages both cartilage and bone tissues and can progress to severe osteoarthritis, which has been one of the difficult problems for clinicians. The vigorous development of material science and tissue engineering provides new ideas for the treatment of OCD, in which the selection of scaffold materials is particularly important. In this study, true-bone-ceramics (TBC), which has good mechanical strength and osteoconductivity, and type I collagen (COL1), which has excellent biocompatibility, were chosen as scaffold materials to co-construct the TBC/COL1 scaffold for osteochondral repair. In order to ensure the most appropriate collagen coating concentration, three experimental groups (1, 5, 12 mg/ml) were set up. Through the physicochemical property test, biocompatibility analysis and in vivo implantation experiments of composite scaffolds, 12 mg/ml TBC/COL1 scaffolds present the best repair effect among the three groups.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06852-5.pdf","citationCount":"0","resultStr":"{\"title\":\"True-bone-ceramics / type I collagen scaffolds for repairing osteochondral defect\",\"authors\":\"Yuhan Jiang, Tenghai Li, Yingyue Lou, Bingzhang Liu, Yilin Liu, Tian Li, Duo Zhang\",\"doi\":\"10.1007/s10856-024-06852-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the incidence of cartilage defects has increased dramatically, and its etiology is complex and varied. Osteochondritis dissecans (OCD), as one of the main etiologies, damages both cartilage and bone tissues and can progress to severe osteoarthritis, which has been one of the difficult problems for clinicians. The vigorous development of material science and tissue engineering provides new ideas for the treatment of OCD, in which the selection of scaffold materials is particularly important. In this study, true-bone-ceramics (TBC), which has good mechanical strength and osteoconductivity, and type I collagen (COL1), which has excellent biocompatibility, were chosen as scaffold materials to co-construct the TBC/COL1 scaffold for osteochondral repair. In order to ensure the most appropriate collagen coating concentration, three experimental groups (1, 5, 12 mg/ml) were set up. Through the physicochemical property test, biocompatibility analysis and in vivo implantation experiments of composite scaffolds, 12 mg/ml TBC/COL1 scaffolds present the best repair effect among the three groups.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10856-024-06852-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-024-06852-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06852-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
近年来,软骨缺损的发病率急剧上升,其病因复杂多样。夹层性骨软骨炎(osteondritis夹层炎,OCD)是软骨和骨组织损伤的主要病因之一,可发展为严重的骨关节炎,一直是困扰临床医生的难题之一。材料科学和组织工程的蓬勃发展为强迫症的治疗提供了新的思路,其中支架材料的选择尤为重要。本研究选择具有良好机械强度和骨导电性的真骨陶瓷(true-bone-ceramics, TBC)和具有良好生物相容性的I型胶原(type I collagen, COL1)作为支架材料,共同构建TBC/COL1骨软骨修复支架。为保证最适宜的胶原包被浓度,设1、5、12 mg/ml 3个实验组。通过复合支架的理化性能测试、生物相容性分析和体内植入实验,3组中12mg /ml TBC/COL1支架的修复效果最好。图形抽象
True-bone-ceramics / type I collagen scaffolds for repairing osteochondral defect
In recent years, the incidence of cartilage defects has increased dramatically, and its etiology is complex and varied. Osteochondritis dissecans (OCD), as one of the main etiologies, damages both cartilage and bone tissues and can progress to severe osteoarthritis, which has been one of the difficult problems for clinicians. The vigorous development of material science and tissue engineering provides new ideas for the treatment of OCD, in which the selection of scaffold materials is particularly important. In this study, true-bone-ceramics (TBC), which has good mechanical strength and osteoconductivity, and type I collagen (COL1), which has excellent biocompatibility, were chosen as scaffold materials to co-construct the TBC/COL1 scaffold for osteochondral repair. In order to ensure the most appropriate collagen coating concentration, three experimental groups (1, 5, 12 mg/ml) were set up. Through the physicochemical property test, biocompatibility analysis and in vivo implantation experiments of composite scaffolds, 12 mg/ml TBC/COL1 scaffolds present the best repair effect among the three groups.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.