突触转录物的失调是ALS患者源性运动神经元网络异常的基础。

IF 5 2区 生物学 Q2 CELL BIOLOGY American journal of physiology. Cell physiology Pub Date : 2024-12-26 DOI:10.1152/ajpcell.00725.2024
Anna M Kollstrøm, Nicholas Christiansen, Axel Sandvig, Ioanna Sandvig
{"title":"突触转录物的失调是ALS患者源性运动神经元网络异常的基础。","authors":"Anna M Kollstrøm, Nicholas Christiansen, Axel Sandvig, Ioanna Sandvig","doi":"10.1152/ajpcell.00725.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve. To address this, we systematically monitored the structural and functional dynamics of motor neuron networks with a confirmed endogenous <i>C9orf72</i> mutation. We show that ALS patient-derived motor neurons display time-dependent neural network dysfunction, specifically reduced firing rate and spike amplitude, impaired bursting, but higher overall synchrony in network activity. These changes coincided with altered neurite outgrowth and branching within the networks. Moreover, transcriptional analyses revealed dysregulation of molecular pathways involved in synaptic development and maintenance, neurite outgrowth and cell adhesion, suggesting impaired synaptic stabilization. This study identifies early synaptic dysfunction as a contributing mechanism resulting in network-wide structural and functional compensation, which may over time render the networks vulnerable to neurodegeneration.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysregulation of synaptic transcripts underlies network abnormalities in ALS patient-derived motor neurons.\",\"authors\":\"Anna M Kollstrøm, Nicholas Christiansen, Axel Sandvig, Ioanna Sandvig\",\"doi\":\"10.1152/ajpcell.00725.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve. To address this, we systematically monitored the structural and functional dynamics of motor neuron networks with a confirmed endogenous <i>C9orf72</i> mutation. We show that ALS patient-derived motor neurons display time-dependent neural network dysfunction, specifically reduced firing rate and spike amplitude, impaired bursting, but higher overall synchrony in network activity. These changes coincided with altered neurite outgrowth and branching within the networks. Moreover, transcriptional analyses revealed dysregulation of molecular pathways involved in synaptic development and maintenance, neurite outgrowth and cell adhesion, suggesting impaired synaptic stabilization. This study identifies early synaptic dysfunction as a contributing mechanism resulting in network-wide structural and functional compensation, which may over time render the networks vulnerable to neurodegeneration.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00725.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00725.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肌萎缩性侧索硬化症(ALS)以上下运动神经元功能障碍和丧失为特征。一些研究已经确定了在症状出现之前运动神经元的结构和功能改变,但这种改变的潜在原因以及它们如何导致受影响的运动神经元网络的进行性变性尚不清楚。重要的是,神经网络活动的短期和长期时空动态使得辨别与als相关的网络重构如何出现和演变具有挑战性。为了解决这个问题,我们系统地监测了内源性C9orf72突变的运动神经元网络的结构和功能动力学。我们发现,ALS患者衍生的运动神经元表现出时间依赖性的神经网络功能障碍,特别是放电率和峰值幅度降低,破裂受损,但网络活动的整体同步性更高。这些变化与神经网络中神经突生长和分支的改变相一致。此外,转录分析显示,参与突触发育和维持、神经突生长和细胞粘附的分子通路失调,表明突触稳定性受损。本研究确定早期突触功能障碍是导致网络范围结构和功能代偿的一个促进机制,随着时间的推移,这可能使网络容易受到神经变性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dysregulation of synaptic transcripts underlies network abnormalities in ALS patient-derived motor neurons.

Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve. To address this, we systematically monitored the structural and functional dynamics of motor neuron networks with a confirmed endogenous C9orf72 mutation. We show that ALS patient-derived motor neurons display time-dependent neural network dysfunction, specifically reduced firing rate and spike amplitude, impaired bursting, but higher overall synchrony in network activity. These changes coincided with altered neurite outgrowth and branching within the networks. Moreover, transcriptional analyses revealed dysregulation of molecular pathways involved in synaptic development and maintenance, neurite outgrowth and cell adhesion, suggesting impaired synaptic stabilization. This study identifies early synaptic dysfunction as a contributing mechanism resulting in network-wide structural and functional compensation, which may over time render the networks vulnerable to neurodegeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
期刊最新文献
An Endogenous Aryl Hydrocarbon Receptor Ligand Dysregulates Endothelial Functions, Transcriptome, and Phosphoproteome. Effects of oral γ-aminobutyric acid intake on muscle regeneration in diabetic mice. Inflammation induced PFKFB3-mediated glycolysis promoting myometrium contraction through the PI3K-Akt-mTOR pathway in preterm birth mice. Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training. Histone lactylation-mediated overexpression of RASD2 promotes endometriosis progression via upregulating the SUMOylation of CTPS1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1