脱水人羊膜-绒毛膜作为牙髓组织再生的生物活性支架。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-12-18 DOI:10.3390/biomimetics9120771
Sahng G Kim
{"title":"脱水人羊膜-绒毛膜作为牙髓组织再生的生物活性支架。","authors":"Sahng G Kim","doi":"10.3390/biomimetics9120771","DOIUrl":null,"url":null,"abstract":"<p><p>The dehydrated human amnion-chorion membranes (dHACMs) derived from the human placenta have emerged as a promising biomaterial for dental pulp regeneration owing to their unique biological and structural properties. The purpose of this review is to explore the potentials of dHACMs in dental pulp tissue engineering, focusing on their ability to promote cellular proliferation, differentiation, angiogenesis, and neurogenesis. dHACMs are rich in extracellular matrix proteins and growth factors such as TGF-β1, FGF2, and VEGF. They also exhibit significant anti-inflammatory and antimicrobial properties, creating an optimal environment for dental pulp regeneration. The applications of dHACMs in regenerative endodontic procedures are discussed, highlighting their ability to support the formation of dentin and well-vascularized pulp-like tissue. This review demonstrates that dHACMs hold significant potential for enhancing the success of pulp regeneration and offer a biologically based approach to preserve tooth vitality and improve tooth survival. Future research is expected to focus on conducting long-term clinical studies to establish their efficacy and safety.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727341/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dehydrated Human Amnion-Chorion Membrane as a Bioactive Scaffold for Dental Pulp Tissue Regeneration.\",\"authors\":\"Sahng G Kim\",\"doi\":\"10.3390/biomimetics9120771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dehydrated human amnion-chorion membranes (dHACMs) derived from the human placenta have emerged as a promising biomaterial for dental pulp regeneration owing to their unique biological and structural properties. The purpose of this review is to explore the potentials of dHACMs in dental pulp tissue engineering, focusing on their ability to promote cellular proliferation, differentiation, angiogenesis, and neurogenesis. dHACMs are rich in extracellular matrix proteins and growth factors such as TGF-β1, FGF2, and VEGF. They also exhibit significant anti-inflammatory and antimicrobial properties, creating an optimal environment for dental pulp regeneration. The applications of dHACMs in regenerative endodontic procedures are discussed, highlighting their ability to support the formation of dentin and well-vascularized pulp-like tissue. This review demonstrates that dHACMs hold significant potential for enhancing the success of pulp regeneration and offer a biologically based approach to preserve tooth vitality and improve tooth survival. Future research is expected to focus on conducting long-term clinical studies to establish their efficacy and safety.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9120771\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120771","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从人胎盘中提取的脱水羊膜-绒毛膜由于其独特的生物学和结构特性而成为一种很有前途的牙髓再生生物材料。本文旨在探讨dHACMs在牙髓组织工程中的应用潜力,重点介绍其促进细胞增殖、分化、血管生成和神经发生的能力。dHACMs富含细胞外基质蛋白及TGF-β1、FGF2、VEGF等生长因子。它们还具有显著的抗炎和抗菌特性,为牙髓再生创造了最佳环境。讨论了dHACMs在再生牙髓治疗中的应用,强调了它们支持牙本质和血管化良好的牙髓样组织形成的能力。这篇综述表明,dHACMs在提高牙髓再生成功率方面具有重要的潜力,并提供了一种基于生物学的方法来保持牙齿的活力和提高牙齿的存活率。未来的研究预计将集中在进行长期临床研究,以确定其有效性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dehydrated Human Amnion-Chorion Membrane as a Bioactive Scaffold for Dental Pulp Tissue Regeneration.

The dehydrated human amnion-chorion membranes (dHACMs) derived from the human placenta have emerged as a promising biomaterial for dental pulp regeneration owing to their unique biological and structural properties. The purpose of this review is to explore the potentials of dHACMs in dental pulp tissue engineering, focusing on their ability to promote cellular proliferation, differentiation, angiogenesis, and neurogenesis. dHACMs are rich in extracellular matrix proteins and growth factors such as TGF-β1, FGF2, and VEGF. They also exhibit significant anti-inflammatory and antimicrobial properties, creating an optimal environment for dental pulp regeneration. The applications of dHACMs in regenerative endodontic procedures are discussed, highlighting their ability to support the formation of dentin and well-vascularized pulp-like tissue. This review demonstrates that dHACMs hold significant potential for enhancing the success of pulp regeneration and offer a biologically based approach to preserve tooth vitality and improve tooth survival. Future research is expected to focus on conducting long-term clinical studies to establish their efficacy and safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1