异蝇双歧飞行器运动学及流场分析。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-12-20 DOI:10.3390/biomimetics9120777
Huan Shen, Kai Cao, Chao Liu, Zhiyuan Mao, Qian Li, Qingfei Han, Yi Sun, Zhikang Yang, Youzhi Xu, Shutao Wu, Jiajun Xu, Aihong Ji
{"title":"异蝇双歧飞行器运动学及流场分析。","authors":"Huan Shen, Kai Cao, Chao Liu, Zhiyuan Mao, Qian Li, Qingfei Han, Yi Sun, Zhikang Yang, Youzhi Xu, Shutao Wu, Jiajun Xu, Aihong Ji","doi":"10.3390/biomimetics9120777","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, bioinspired insect flight has become a prominent research area, with a particular focus on beetle-inspired aerial vehicles. Studying the unique flight mechanisms and structural characteristics of beetles has significant implications for the optimization of biomimetic flying devices. Among beetles, <i>Allomyrina dichotoma</i> (rhinoceros beetle) exhibits a distinct wing deployment-flight-retraction sequence, whereby the interaction between the hindwings and protective elytra contributes to lift generation and maintenance. This study investigates <i>A. dichotoma's</i> wing deployment, flight, and retraction behaviors through motion analysis, uncovering the critical role of the elytra in wing folding. We capture the kinematic parameters throughout the entire flight process and develop an accurate kinematic model of <i>A. dichotoma</i> flight. Using smoke visualization, we analyze the flow field generated during flight, revealing the formation of enhanced leading-edge vortices and attached vortices during both upstroke and downstroke phases. These findings uncover the high-lift mechanism underlying <i>A. dichotoma</i>'s flight dynamics, offering valuable insights for optimizing beetle-inspired micro aerial vehicles.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727282/pdf/","citationCount":"0","resultStr":"{\"title\":\"Kinematics and Flow Field Analysis of <i>Allomyrina dichotoma</i> Flight.\",\"authors\":\"Huan Shen, Kai Cao, Chao Liu, Zhiyuan Mao, Qian Li, Qingfei Han, Yi Sun, Zhikang Yang, Youzhi Xu, Shutao Wu, Jiajun Xu, Aihong Ji\",\"doi\":\"10.3390/biomimetics9120777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, bioinspired insect flight has become a prominent research area, with a particular focus on beetle-inspired aerial vehicles. Studying the unique flight mechanisms and structural characteristics of beetles has significant implications for the optimization of biomimetic flying devices. Among beetles, <i>Allomyrina dichotoma</i> (rhinoceros beetle) exhibits a distinct wing deployment-flight-retraction sequence, whereby the interaction between the hindwings and protective elytra contributes to lift generation and maintenance. This study investigates <i>A. dichotoma's</i> wing deployment, flight, and retraction behaviors through motion analysis, uncovering the critical role of the elytra in wing folding. We capture the kinematic parameters throughout the entire flight process and develop an accurate kinematic model of <i>A. dichotoma</i> flight. Using smoke visualization, we analyze the flow field generated during flight, revealing the formation of enhanced leading-edge vortices and attached vortices during both upstroke and downstroke phases. These findings uncover the high-lift mechanism underlying <i>A. dichotoma</i>'s flight dynamics, offering valuable insights for optimizing beetle-inspired micro aerial vehicles.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 12\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9120777\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9120777","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,生物昆虫飞行已成为一个突出的研究领域,特别是甲虫启发的飞行器。研究甲虫独特的飞行机制和结构特征对仿生飞行装置的优化具有重要意义。在甲虫中,异角角甲虫(Allomyrina dichotoma, rhinoceros beetle)表现出独特的翅膀展开-飞行-收缩的顺序,即后翅和鞘翅之间的相互作用有助于升力的产生和维持。本研究通过运动分析研究了双翅翅的展开、飞行和缩回行为,揭示了鞘翅在翅膀折叠中的关键作用。我们捕获了整个飞行过程中的运动学参数,并建立了精确的双歧蝽飞行运动学模型。利用烟雾可视化技术,我们分析了飞行过程中产生的流场,揭示了在上冲程和下冲程阶段增强前缘涡和附加涡的形成。这些发现揭示了A. dichotoma飞行动力学背后的高升力机制,为优化甲虫启发的微型飞行器提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinematics and Flow Field Analysis of Allomyrina dichotoma Flight.

In recent years, bioinspired insect flight has become a prominent research area, with a particular focus on beetle-inspired aerial vehicles. Studying the unique flight mechanisms and structural characteristics of beetles has significant implications for the optimization of biomimetic flying devices. Among beetles, Allomyrina dichotoma (rhinoceros beetle) exhibits a distinct wing deployment-flight-retraction sequence, whereby the interaction between the hindwings and protective elytra contributes to lift generation and maintenance. This study investigates A. dichotoma's wing deployment, flight, and retraction behaviors through motion analysis, uncovering the critical role of the elytra in wing folding. We capture the kinematic parameters throughout the entire flight process and develop an accurate kinematic model of A. dichotoma flight. Using smoke visualization, we analyze the flow field generated during flight, revealing the formation of enhanced leading-edge vortices and attached vortices during both upstroke and downstroke phases. These findings uncover the high-lift mechanism underlying A. dichotoma's flight dynamics, offering valuable insights for optimizing beetle-inspired micro aerial vehicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1