二甲基色胺(DMT)和伊博格碱在短暂转染人5-HT2A受体的HEK细胞中引起膜效应。

IF 2.7 4区 医学 Q3 NEUROSCIENCES Brain Research Pub Date : 2024-12-26 DOI:10.1016/j.brainres.2024.149425
Jannik Nicklas Eliasen, Uffe Kristiansen, Kristi A. Kohlmeier
{"title":"二甲基色胺(DMT)和伊博格碱在短暂转染人5-HT2A受体的HEK细胞中引起膜效应。","authors":"Jannik Nicklas Eliasen,&nbsp;Uffe Kristiansen,&nbsp;Kristi A. Kohlmeier","doi":"10.1016/j.brainres.2024.149425","DOIUrl":null,"url":null,"abstract":"<div><div>Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HT<sub>2A</sub>R), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HT<sub>2A</sub>R naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments. New compounds suspected to act at the 5-HT<sub>2A</sub>R are actively being generated. HEK cells are not commonly used to study membrane effects induced by agonists of GPCRs. In this study, for the first time, membrane actions of two psychedelics, dimethyltryptamine (DMT) and ibogaine on HEK cells transiently transfected with either the human wildtype (WT) or the human I197V mutated 5-HT<sub>2A</sub>R were investigated using whole-cell electrophysiology. Membrane effects were observed in both genotypes and with both drugs in most cells, while no responses were observed in non-transfected HEK cells suggesting that responses were due to 5-HT<sub>2A</sub>R activation. In HEK cells transfected with the I197V SNP, a significantly shorter duration of the DMT response was observed, however there were no differences in drug-elicited amplitudes between drug or receptor genotype. I-V curves showed a significant effect of drug exposure for both DMT and ibogaine at the highest concentration evaluated. Taken together, our data show transfection of the 5-HT<sub>2A</sub>R, a GPCR, in HEK cells is able to activate downstream ion channels following exposure to two different 5-HT<sub>2A</sub>R agonists. Accordingly, investigations of novel compounds suspected to act at 5-HT<sub>2A</sub>Rs can include examination of elicitation of ionic currents in 5-HT<sub>2A</sub>R transfected HEK cells, and drug effects at SNPs can also be evaluated.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1850 ","pages":"Article 149425"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimethyltryptamine (DMT) and ibogaine elicit membrane effects in HEK cells transiently transfected with the human 5-HT2A receptor\",\"authors\":\"Jannik Nicklas Eliasen,&nbsp;Uffe Kristiansen,&nbsp;Kristi A. Kohlmeier\",\"doi\":\"10.1016/j.brainres.2024.149425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HT<sub>2A</sub>R), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HT<sub>2A</sub>R naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments. New compounds suspected to act at the 5-HT<sub>2A</sub>R are actively being generated. HEK cells are not commonly used to study membrane effects induced by agonists of GPCRs. In this study, for the first time, membrane actions of two psychedelics, dimethyltryptamine (DMT) and ibogaine on HEK cells transiently transfected with either the human wildtype (WT) or the human I197V mutated 5-HT<sub>2A</sub>R were investigated using whole-cell electrophysiology. Membrane effects were observed in both genotypes and with both drugs in most cells, while no responses were observed in non-transfected HEK cells suggesting that responses were due to 5-HT<sub>2A</sub>R activation. In HEK cells transfected with the I197V SNP, a significantly shorter duration of the DMT response was observed, however there were no differences in drug-elicited amplitudes between drug or receptor genotype. I-V curves showed a significant effect of drug exposure for both DMT and ibogaine at the highest concentration evaluated. Taken together, our data show transfection of the 5-HT<sub>2A</sub>R, a GPCR, in HEK cells is able to activate downstream ion channels following exposure to two different 5-HT<sub>2A</sub>R agonists. Accordingly, investigations of novel compounds suspected to act at 5-HT<sub>2A</sub>Rs can include examination of elicitation of ionic currents in 5-HT<sub>2A</sub>R transfected HEK cells, and drug effects at SNPs can also be evaluated.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1850 \",\"pages\":\"Article 149425\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899324006802\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324006802","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

迷幻药有望治疗精神疾病。治疗效果似乎涉及5-羟色胺2A受体(5-HT2AR)的激活,这是一种G蛋白偶联受体(GPCR)。5-HT2AR的几个snp自然发生,这与受体功能的差异和对治疗的反应性改变有关。怀疑在5-HT2AR上起作用的新化合物正在积极地产生。HEK细胞不常用于研究gpcr激动剂诱导的膜效应。本研究首次采用全细胞电生理学方法,研究了二甲基色胺(DMT)和伊博加因两种致幻剂对瞬时转染人野生型(WT)或人I197V突变5-HT2AR的HEK细胞的膜作用。在大多数细胞中,两种基因型和两种药物均观察到膜效应,而在未转染的HEK细胞中未观察到反应,这表明反应是由于5-HT2AR激活所致。在转染了I197V SNP的HEK细胞中,观察到DMT反应的持续时间明显缩短,但药物或受体基因型之间的药物引起的振幅没有差异。I-V曲线显示,在评估的最高浓度下,药物暴露对DMT和伊波加因都有显著影响。综上所述,我们的数据显示,在暴露于两种不同的5-HT2AR激动剂后,转染HEK细胞中的5-HT2AR(一种GPCR)能够激活下游离子通道。因此,对可能作用于5-HT2AR的新化合物的研究可以包括检查5-HT2AR转染的HEK细胞中离子电流的激发,以及对snp的药物作用也可以进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dimethyltryptamine (DMT) and ibogaine elicit membrane effects in HEK cells transiently transfected with the human 5-HT2A receptor
Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HT2AR), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HT2AR naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments. New compounds suspected to act at the 5-HT2AR are actively being generated. HEK cells are not commonly used to study membrane effects induced by agonists of GPCRs. In this study, for the first time, membrane actions of two psychedelics, dimethyltryptamine (DMT) and ibogaine on HEK cells transiently transfected with either the human wildtype (WT) or the human I197V mutated 5-HT2AR were investigated using whole-cell electrophysiology. Membrane effects were observed in both genotypes and with both drugs in most cells, while no responses were observed in non-transfected HEK cells suggesting that responses were due to 5-HT2AR activation. In HEK cells transfected with the I197V SNP, a significantly shorter duration of the DMT response was observed, however there were no differences in drug-elicited amplitudes between drug or receptor genotype. I-V curves showed a significant effect of drug exposure for both DMT and ibogaine at the highest concentration evaluated. Taken together, our data show transfection of the 5-HT2AR, a GPCR, in HEK cells is able to activate downstream ion channels following exposure to two different 5-HT2AR agonists. Accordingly, investigations of novel compounds suspected to act at 5-HT2ARs can include examination of elicitation of ionic currents in 5-HT2AR transfected HEK cells, and drug effects at SNPs can also be evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Research
Brain Research 医学-神经科学
CiteScore
5.90
自引率
3.40%
发文量
268
审稿时长
47 days
期刊介绍: An international multidisciplinary journal devoted to fundamental research in the brain sciences. Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed. With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.
期刊最新文献
Passiflora incarnate extract attenuates neuronal loss and memory impairment in stressed rats Flavonoids serve as a promising therapeutic agent for ischemic stroke. Editorial Board High frequency exercise after human cranial bone-derived mesenchymal stem cells transplantation enhances motor functional recovery following traumatic brain injury in mice. Resting-state EEG alpha asymmetry predicts false belief understanding during early childhood: An exploratory longitudinal study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1