精神病学的分层治疗算法:严重精神疾病的分层药物基因组学项目(Psych-STRATA):由Horizon Europe资助的多学科项目的概念、目标和方法。

IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY European Archives of Psychiatry and Clinical Neuroscience Pub Date : 2024-12-27 DOI:10.1007/s00406-024-01944-3
B T Baune, S E Fromme, M Aberg, M Adli, A Afantitis, I Akkouh, O A Andreassen, C Angulo, S Barlati, C Brasso, P Bucci, M Budde, P Buspavanich, V Cavone, K Demyttenaere, C M Diaz-Caneja, M Dierssen, S Djurovic, M Driessen, U W Ebner-Priemer, J Engelmann, S Englisch, C Fabbri, P Fossati, H Fröhlich, S Gasser, N Gottlieb, E Heirman, A Hofer, O Howes, L Ilzarbe, H Jeung-Maarse, L V Kessing, T D Kockler, M Landén, L Levi, K Lieb, N Lorenzon, J Luykx, M Manchia, M Martinez de Lagran, A Minelli, C Moreno, A Mucci, B Müller-Myhsok, P Nilsson, C Okhuijsen-Pfeifer, K D Papavasileiou, S Papiol, A F Pardinas, P Paribello, C Pisanu, M-C Potier, A Reif, R Ricken, S Ripke, P Rocca, D Scherrer, C Schiweck, K O Schubert, T G Schulze, A Serretti, A Squassina, C Stephan, A Tsoumanis, E Van der Eycken, E Vieta, A Vita, J T R Walters, D Weichert, M Weiser, I R Willcocks, I Winter-van Rossum, A H Young, M J Ziller
{"title":"精神病学的分层治疗算法:严重精神疾病的分层药物基因组学项目(Psych-STRATA):由Horizon Europe资助的多学科项目的概念、目标和方法。","authors":"B T Baune, S E Fromme, M Aberg, M Adli, A Afantitis, I Akkouh, O A Andreassen, C Angulo, S Barlati, C Brasso, P Bucci, M Budde, P Buspavanich, V Cavone, K Demyttenaere, C M Diaz-Caneja, M Dierssen, S Djurovic, M Driessen, U W Ebner-Priemer, J Engelmann, S Englisch, C Fabbri, P Fossati, H Fröhlich, S Gasser, N Gottlieb, E Heirman, A Hofer, O Howes, L Ilzarbe, H Jeung-Maarse, L V Kessing, T D Kockler, M Landén, L Levi, K Lieb, N Lorenzon, J Luykx, M Manchia, M Martinez de Lagran, A Minelli, C Moreno, A Mucci, B Müller-Myhsok, P Nilsson, C Okhuijsen-Pfeifer, K D Papavasileiou, S Papiol, A F Pardinas, P Paribello, C Pisanu, M-C Potier, A Reif, R Ricken, S Ripke, P Rocca, D Scherrer, C Schiweck, K O Schubert, T G Schulze, A Serretti, A Squassina, C Stephan, A Tsoumanis, E Van der Eycken, E Vieta, A Vita, J T R Walters, D Weichert, M Weiser, I R Willcocks, I Winter-van Rossum, A H Young, M J Ziller","doi":"10.1007/s00406-024-01944-3","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia (SCZ), bipolar (BD) and major depression disorder (MDD) are severe psychiatric disorders that are challenging to treat, often leading to treatment resistance (TR). It is crucial to develop effective methods to identify and treat patients at risk of TR at an early stage in a personalized manner, considering their biological basis, their clinical and psychosocial characteristics. Effective translation of theoretical knowledge into clinical practice is essential for achieving this goal. The Psych-STRATA consortium addresses this research gap through a seven-step approach. First, transdiagnostic biosignatures of SCZ, BD and MDD are identified by GWAS and multi-modal omics signatures associated with treatment outcome and TR (steps 1 and 2). In a next step (step 3), a randomized controlled intervention study is conducted to test the efficacy and safety of an early intensified pharmacological treatment. Following this RCT, a combined clinical and omics-based algorithm will be developed to estimate the risk for TR. This algorithm-based tool will be designed for early detection and management of TR (step 4). This algorithm will then be implemented into a framework of shared treatment decision-making with a novel mental health board (step 5). The final focus of the project is based on patient empowerment, dissemination and education (step 6) as well as the development of a software for fast, effective and individualized treatment decisions (step 7). The project has the potential to change the current trial and error treatment approach towards an evidence-based individualized treatment setting that takes TR risk into account at an early stage.</p>","PeriodicalId":11822,"journal":{"name":"European Archives of Psychiatry and Clinical Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stratified treatment algorithm in psychiatry: a program on stratified pharmacogenomics in severe mental illness (Psych-STRATA): concept, objectives and methodologies of a multidisciplinary project funded by Horizon Europe.\",\"authors\":\"B T Baune, S E Fromme, M Aberg, M Adli, A Afantitis, I Akkouh, O A Andreassen, C Angulo, S Barlati, C Brasso, P Bucci, M Budde, P Buspavanich, V Cavone, K Demyttenaere, C M Diaz-Caneja, M Dierssen, S Djurovic, M Driessen, U W Ebner-Priemer, J Engelmann, S Englisch, C Fabbri, P Fossati, H Fröhlich, S Gasser, N Gottlieb, E Heirman, A Hofer, O Howes, L Ilzarbe, H Jeung-Maarse, L V Kessing, T D Kockler, M Landén, L Levi, K Lieb, N Lorenzon, J Luykx, M Manchia, M Martinez de Lagran, A Minelli, C Moreno, A Mucci, B Müller-Myhsok, P Nilsson, C Okhuijsen-Pfeifer, K D Papavasileiou, S Papiol, A F Pardinas, P Paribello, C Pisanu, M-C Potier, A Reif, R Ricken, S Ripke, P Rocca, D Scherrer, C Schiweck, K O Schubert, T G Schulze, A Serretti, A Squassina, C Stephan, A Tsoumanis, E Van der Eycken, E Vieta, A Vita, J T R Walters, D Weichert, M Weiser, I R Willcocks, I Winter-van Rossum, A H Young, M J Ziller\",\"doi\":\"10.1007/s00406-024-01944-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia (SCZ), bipolar (BD) and major depression disorder (MDD) are severe psychiatric disorders that are challenging to treat, often leading to treatment resistance (TR). It is crucial to develop effective methods to identify and treat patients at risk of TR at an early stage in a personalized manner, considering their biological basis, their clinical and psychosocial characteristics. Effective translation of theoretical knowledge into clinical practice is essential for achieving this goal. The Psych-STRATA consortium addresses this research gap through a seven-step approach. First, transdiagnostic biosignatures of SCZ, BD and MDD are identified by GWAS and multi-modal omics signatures associated with treatment outcome and TR (steps 1 and 2). In a next step (step 3), a randomized controlled intervention study is conducted to test the efficacy and safety of an early intensified pharmacological treatment. Following this RCT, a combined clinical and omics-based algorithm will be developed to estimate the risk for TR. This algorithm-based tool will be designed for early detection and management of TR (step 4). This algorithm will then be implemented into a framework of shared treatment decision-making with a novel mental health board (step 5). The final focus of the project is based on patient empowerment, dissemination and education (step 6) as well as the development of a software for fast, effective and individualized treatment decisions (step 7). The project has the potential to change the current trial and error treatment approach towards an evidence-based individualized treatment setting that takes TR risk into account at an early stage.</p>\",\"PeriodicalId\":11822,\"journal\":{\"name\":\"European Archives of Psychiatry and Clinical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Archives of Psychiatry and Clinical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00406-024-01944-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Psychiatry and Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00406-024-01944-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精神分裂症(SCZ)、双相情感障碍(BD)和重度抑郁症(MDD)是具有挑战性的严重精神疾病,通常会导致治疗耐药性(TR)。考虑到患者的生物学基础、临床和社会心理特征,制定有效的方法,在早期阶段以个性化的方式识别和治疗有TR风险的患者是至关重要的。将理论知识有效地转化为临床实践是实现这一目标的关键。Psych-STRATA联盟通过七步方法解决了这一研究缺口。首先,通过GWAS和与治疗结果和TR相关的多模态组学特征识别SCZ、BD和MDD的跨诊断生物特征(步骤1和2)。在下一步(步骤3)中,进行一项随机对照干预研究,以测试早期强化药物治疗的有效性和安全性。下面这个个随机对照试验,结合临床和omics-based发达估计算法将TR的风险。这个算法工具将用于早期检测和管理TR(步骤4)。该算法将被实现成一个框架与小说分享治疗决策心理健康委员会(步骤5)。最后重点项目是基于病人的赋权,传播和教育(步骤6)以及软件的快速的发展,该项目有可能改变目前的试错治疗方法,转向基于证据的个性化治疗环境,在早期阶段考虑到TR风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A stratified treatment algorithm in psychiatry: a program on stratified pharmacogenomics in severe mental illness (Psych-STRATA): concept, objectives and methodologies of a multidisciplinary project funded by Horizon Europe.

Schizophrenia (SCZ), bipolar (BD) and major depression disorder (MDD) are severe psychiatric disorders that are challenging to treat, often leading to treatment resistance (TR). It is crucial to develop effective methods to identify and treat patients at risk of TR at an early stage in a personalized manner, considering their biological basis, their clinical and psychosocial characteristics. Effective translation of theoretical knowledge into clinical practice is essential for achieving this goal. The Psych-STRATA consortium addresses this research gap through a seven-step approach. First, transdiagnostic biosignatures of SCZ, BD and MDD are identified by GWAS and multi-modal omics signatures associated with treatment outcome and TR (steps 1 and 2). In a next step (step 3), a randomized controlled intervention study is conducted to test the efficacy and safety of an early intensified pharmacological treatment. Following this RCT, a combined clinical and omics-based algorithm will be developed to estimate the risk for TR. This algorithm-based tool will be designed for early detection and management of TR (step 4). This algorithm will then be implemented into a framework of shared treatment decision-making with a novel mental health board (step 5). The final focus of the project is based on patient empowerment, dissemination and education (step 6) as well as the development of a software for fast, effective and individualized treatment decisions (step 7). The project has the potential to change the current trial and error treatment approach towards an evidence-based individualized treatment setting that takes TR risk into account at an early stage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
4.30%
发文量
154
审稿时长
6-12 weeks
期刊介绍: The original papers published in the European Archives of Psychiatry and Clinical Neuroscience deal with all aspects of psychiatry and related clinical neuroscience. Clinical psychiatry, psychopathology, epidemiology as well as brain imaging, neuropathological, neurophysiological, neurochemical and moleculargenetic studies of psychiatric disorders are among the topics covered. Thus both the clinician and the neuroscientist are provided with a handy source of information on important scientific developments.
期刊最新文献
Common and distinct neural patterns of gray matter alterations in adults with anorexia nervosa and obsessive-compulsive disorder. Neurocognitive challenges Post-COVID: current perspectives and future solutions. Correction: predictors of response to accelerated rTMS in the treatment of treatment-resistant depression. How esketamine influences inflammatory cytokines, cortisol and anhedonia in TRD patients is an open question. Comment on "Efficacy of racemic ketamine or esketamine monotherapy for reducing suicidal ideation in uni- or bipolar depression: a systematic review and meta-analysis".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1