{"title":"量化束大小对强度调制质子治疗的影响与稳健优化头颈部癌症-与强度调制放射治疗的比较。","authors":"Hiromi Baba, Kenji Hotta, Ryo Takahashi, Kana Motegi, Yuya Sugama, Takeji Sakae, Hidenobu Tachibana","doi":"10.1093/jrr/rrae097","DOIUrl":null,"url":null,"abstract":"<p><p>We assessed the effect of beam size on plan robustness for intensity-modulated proton therapy (IMPT) of head and neck cancer (HNC) and compared the plan quality including robustness with that of intensity-modulated radiation therapy (IMRT). IMPT plans were generated for six HNC patients using six beam sizes (air-sigma 3-17 mm at isocenter for a 70-230 MeV) and two optimization methods for planning target volume-based non-robust optimization (NRO) and clinical target volume (CTV)-based robust optimization (RO). Worst-case dosimetric parameters and plan robustness for CTV and organs-at-risk (OARs) were assessed under different scenarios, assuming a ± 1-5 mm setup error and a ± 3% range error. Statistical comparisons of NRO-IMPT, RO-IMPT and IMRT plans were performed. In regard to CTV-D99%, RO-IMPT with smaller beam size was more robust than RO-IMPT with larger beam sizes, whereas NRO-IMPT showed the opposite (P < 0.05). There was no significant difference in the robustness of the CTV-D99% and CTV-D95% between RO-IMPT and IMRT. The worst-case CTV coverage of IMRT (±5 mm/3%) for all patients was 96.0% ± 1.4% (D99%) and 97.9% ± 0.3% (D95%). For four out of six patients, the worst-case CTV-D95% for RO-IMPT (±1-5 mm/3%) were higher than those for IMRT. Compared with IMRT, RO-IMPT with smaller beam sizes achieved lower worst-case doses to OARs. In HNC treatment, utilizing smaller beam sizes in RO-IMPT improves plan robustness compared to larger beam sizes, achieving comparable target robustness and lower worst-case OARs doses compared to IMRT.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"65-73"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753836/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantification of beam size impact on intensity-modulated proton therapy with robust optimization in head and neck cancer-comparison with intensity-modulated radiation therapy.\",\"authors\":\"Hiromi Baba, Kenji Hotta, Ryo Takahashi, Kana Motegi, Yuya Sugama, Takeji Sakae, Hidenobu Tachibana\",\"doi\":\"10.1093/jrr/rrae097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We assessed the effect of beam size on plan robustness for intensity-modulated proton therapy (IMPT) of head and neck cancer (HNC) and compared the plan quality including robustness with that of intensity-modulated radiation therapy (IMRT). IMPT plans were generated for six HNC patients using six beam sizes (air-sigma 3-17 mm at isocenter for a 70-230 MeV) and two optimization methods for planning target volume-based non-robust optimization (NRO) and clinical target volume (CTV)-based robust optimization (RO). Worst-case dosimetric parameters and plan robustness for CTV and organs-at-risk (OARs) were assessed under different scenarios, assuming a ± 1-5 mm setup error and a ± 3% range error. Statistical comparisons of NRO-IMPT, RO-IMPT and IMRT plans were performed. In regard to CTV-D99%, RO-IMPT with smaller beam size was more robust than RO-IMPT with larger beam sizes, whereas NRO-IMPT showed the opposite (P < 0.05). There was no significant difference in the robustness of the CTV-D99% and CTV-D95% between RO-IMPT and IMRT. The worst-case CTV coverage of IMRT (±5 mm/3%) for all patients was 96.0% ± 1.4% (D99%) and 97.9% ± 0.3% (D95%). For four out of six patients, the worst-case CTV-D95% for RO-IMPT (±1-5 mm/3%) were higher than those for IMRT. Compared with IMRT, RO-IMPT with smaller beam sizes achieved lower worst-case doses to OARs. In HNC treatment, utilizing smaller beam sizes in RO-IMPT improves plan robustness compared to larger beam sizes, achieving comparable target robustness and lower worst-case OARs doses compared to IMRT.</p>\",\"PeriodicalId\":16922,\"journal\":{\"name\":\"Journal of Radiation Research\",\"volume\":\" \",\"pages\":\"65-73\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jrr/rrae097\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrae097","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Quantification of beam size impact on intensity-modulated proton therapy with robust optimization in head and neck cancer-comparison with intensity-modulated radiation therapy.
We assessed the effect of beam size on plan robustness for intensity-modulated proton therapy (IMPT) of head and neck cancer (HNC) and compared the plan quality including robustness with that of intensity-modulated radiation therapy (IMRT). IMPT plans were generated for six HNC patients using six beam sizes (air-sigma 3-17 mm at isocenter for a 70-230 MeV) and two optimization methods for planning target volume-based non-robust optimization (NRO) and clinical target volume (CTV)-based robust optimization (RO). Worst-case dosimetric parameters and plan robustness for CTV and organs-at-risk (OARs) were assessed under different scenarios, assuming a ± 1-5 mm setup error and a ± 3% range error. Statistical comparisons of NRO-IMPT, RO-IMPT and IMRT plans were performed. In regard to CTV-D99%, RO-IMPT with smaller beam size was more robust than RO-IMPT with larger beam sizes, whereas NRO-IMPT showed the opposite (P < 0.05). There was no significant difference in the robustness of the CTV-D99% and CTV-D95% between RO-IMPT and IMRT. The worst-case CTV coverage of IMRT (±5 mm/3%) for all patients was 96.0% ± 1.4% (D99%) and 97.9% ± 0.3% (D95%). For four out of six patients, the worst-case CTV-D95% for RO-IMPT (±1-5 mm/3%) were higher than those for IMRT. Compared with IMRT, RO-IMPT with smaller beam sizes achieved lower worst-case doses to OARs. In HNC treatment, utilizing smaller beam sizes in RO-IMPT improves plan robustness compared to larger beam sizes, achieving comparable target robustness and lower worst-case OARs doses compared to IMRT.
期刊介绍:
The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO).
Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal.
Articles considered fall into two broad categories:
Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable.
Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences.
Please be advised that JRR does not accept any papers of pure physics or chemistry.
The journal is bimonthly, and is edited and published by the JRR Editorial Committee.