Liangyu Ji , Lingnan Kong , Xuan Zhang , Xiangxun Chen , Chao Lu , Feiyun Wu , Ran Tang , Meng Zhao
{"title":"多参数MR序列t1加权和增强t1加权图像在新生儿点状白质病变检测中的应用。","authors":"Liangyu Ji , Lingnan Kong , Xuan Zhang , Xiangxun Chen , Chao Lu , Feiyun Wu , Ran Tang , Meng Zhao","doi":"10.1016/j.mri.2024.110317","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Punctate White Matter Lesion (PWML) is common in neonates. Multi-parametric MR imaging with flexible design (MULTIPLEX, MTP) generates multiple contrasts requires only about 6 min for full-head coverage. This study aimed to evaluate the value of T1WI and aT1WI contrasts of MTP in detecting neonatal punctate white matter lesions.</div></div><div><h3>Materials and methods</h3><div>Twenty-one neonates with punctate white matter damage underwent multi-parametric MR imaging between November 2022 to July 2024. For subjective image quality, two pediatric neuroradiologists assessed overall image quality, and visualization of structures using a 4-point assessment scale. To analyze objective image quality, the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contrast, number and sharpness of lesions were quantified.</div></div><div><h3>Results</h3><div>With regard to sharpness of the lesion, MTP T1WI and aT1WI are comparable to conventional T1W. For subjective assessment, MTP-T1WI exhibited superior overall image quality and anatomical structure display compared to conventional T1WI (<em>P</em> < 0.01). Regarding objective assessment, MTP-T1WI had significantly higher SNR values for gray matter, white matter and lesions than the other two groups. The CNR values of MTP-T1WI and MTP-aT1WI of the white matter to lesion (WM-Lesion) were higher than conventional T1WI. The contrast of aT1WI surpassed that of the other two groups in WM-Lesion contrast. MTP-aT1W can detect more white matter lesions than conventional T1WI (conventional T1WI vs MTP-T1WI vs MTP-aT1WI,123 vs 165 vs 161).</div></div><div><h3>Conclusions</h3><div>The MTP-T1W and aT1W images can enhance lesion contrast and precisely delineate the extent and boundaries of the lesions, and could be more sensitive to PWML than conventional T1WI.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"117 ","pages":"Article 110317"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of T1-weighted and augmented T1-weighted images of multi-parametric MR sequence in detecting neonatal punctate white matter lesions\",\"authors\":\"Liangyu Ji , Lingnan Kong , Xuan Zhang , Xiangxun Chen , Chao Lu , Feiyun Wu , Ran Tang , Meng Zhao\",\"doi\":\"10.1016/j.mri.2024.110317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>Punctate White Matter Lesion (PWML) is common in neonates. Multi-parametric MR imaging with flexible design (MULTIPLEX, MTP) generates multiple contrasts requires only about 6 min for full-head coverage. This study aimed to evaluate the value of T1WI and aT1WI contrasts of MTP in detecting neonatal punctate white matter lesions.</div></div><div><h3>Materials and methods</h3><div>Twenty-one neonates with punctate white matter damage underwent multi-parametric MR imaging between November 2022 to July 2024. For subjective image quality, two pediatric neuroradiologists assessed overall image quality, and visualization of structures using a 4-point assessment scale. To analyze objective image quality, the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contrast, number and sharpness of lesions were quantified.</div></div><div><h3>Results</h3><div>With regard to sharpness of the lesion, MTP T1WI and aT1WI are comparable to conventional T1W. For subjective assessment, MTP-T1WI exhibited superior overall image quality and anatomical structure display compared to conventional T1WI (<em>P</em> < 0.01). Regarding objective assessment, MTP-T1WI had significantly higher SNR values for gray matter, white matter and lesions than the other two groups. The CNR values of MTP-T1WI and MTP-aT1WI of the white matter to lesion (WM-Lesion) were higher than conventional T1WI. The contrast of aT1WI surpassed that of the other two groups in WM-Lesion contrast. MTP-aT1W can detect more white matter lesions than conventional T1WI (conventional T1WI vs MTP-T1WI vs MTP-aT1WI,123 vs 165 vs 161).</div></div><div><h3>Conclusions</h3><div>The MTP-T1W and aT1W images can enhance lesion contrast and precisely delineate the extent and boundaries of the lesions, and could be more sensitive to PWML than conventional T1WI.</div></div>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\"117 \",\"pages\":\"Article 110317\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0730725X24002984\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002984","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Application of T1-weighted and augmented T1-weighted images of multi-parametric MR sequence in detecting neonatal punctate white matter lesions
Background and purpose
Punctate White Matter Lesion (PWML) is common in neonates. Multi-parametric MR imaging with flexible design (MULTIPLEX, MTP) generates multiple contrasts requires only about 6 min for full-head coverage. This study aimed to evaluate the value of T1WI and aT1WI contrasts of MTP in detecting neonatal punctate white matter lesions.
Materials and methods
Twenty-one neonates with punctate white matter damage underwent multi-parametric MR imaging between November 2022 to July 2024. For subjective image quality, two pediatric neuroradiologists assessed overall image quality, and visualization of structures using a 4-point assessment scale. To analyze objective image quality, the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contrast, number and sharpness of lesions were quantified.
Results
With regard to sharpness of the lesion, MTP T1WI and aT1WI are comparable to conventional T1W. For subjective assessment, MTP-T1WI exhibited superior overall image quality and anatomical structure display compared to conventional T1WI (P < 0.01). Regarding objective assessment, MTP-T1WI had significantly higher SNR values for gray matter, white matter and lesions than the other two groups. The CNR values of MTP-T1WI and MTP-aT1WI of the white matter to lesion (WM-Lesion) were higher than conventional T1WI. The contrast of aT1WI surpassed that of the other two groups in WM-Lesion contrast. MTP-aT1W can detect more white matter lesions than conventional T1WI (conventional T1WI vs MTP-T1WI vs MTP-aT1WI,123 vs 165 vs 161).
Conclusions
The MTP-T1W and aT1W images can enhance lesion contrast and precisely delineate the extent and boundaries of the lesions, and could be more sensitive to PWML than conventional T1WI.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.