{"title":"UHPLC-Q-Orbitrap结合DESI-MSI对姜黄根和根茎差异代谢物的空间分布及比较分析","authors":"Jin Wang, Ying Zhu, Chuyue Wu, Qinwan Huang","doi":"10.1002/pca.3493","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The roots and rhizomes of Curcuma longa L. serve as distinct traditional Chinese medicines with varying therapeutic effects, likely attributed to differences in the accumulation and distribution of metabolites in these parts.</p><p><strong>Objective: </strong>The study aims to investigate the differences and spatial distribution patterns of metabolites in C. longa L. roots and rhizomes.</p><p><strong>Methods: </strong>Metabolite analysis of roots and rhizomes was conducted using ultra-high-performance liquid chromatography-quadruple orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) combined with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Using principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) to screen for differential metabolites. The relative contents of differential metabolites were visualized using heat maps. Additionally, the spatial distribution of differential metabolites was analyzed based on DESI-MSI.</p><p><strong>Results: </strong>A total of 49 main chemical components were identified in roots and rhizomes using UHPLC-Q-Orbitrap HRMS. Through nontargeted metabolomics analysis combining UHPLC-Q-Orbitrap HRMS with PCA and OPLS-DA, 24 differential markers were identified; Additionally, using DESI-MSI alongside PCA and OPLS-DA, 18 differential markers were selected. Based on the DESI-MSI results, curcuminoids and sesquiterpenoids, including bisdemethoxycurcumin, demethoxycurcumin, furanodienone, furanogermenone, furanodiene, β-elemene, and curzerene, were more abundant in the rhizomes compared to the roots. And these differential compounds exhibited spatial distribution differences in the epidermis, phloem, and xylem between the roots and rhizomes.</p><p><strong>Conclusion: </strong>The metabolomics analysis using UHPLC-Q-Orbitrap HRMS combined with DESI-MSI suggest differences in the accumulation and spatial distribution of metabolites in C. longa L. roots and rhizomes, possibly related to the biosynthesis of secondary metabolites.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Distribution and Comparative Analysis of Differential Metabolites in Curcuma longa L. Roots and Rhizomes Using UHPLC-Q-Orbitrap HRMS Combined With DESI-MSI.\",\"authors\":\"Jin Wang, Ying Zhu, Chuyue Wu, Qinwan Huang\",\"doi\":\"10.1002/pca.3493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The roots and rhizomes of Curcuma longa L. serve as distinct traditional Chinese medicines with varying therapeutic effects, likely attributed to differences in the accumulation and distribution of metabolites in these parts.</p><p><strong>Objective: </strong>The study aims to investigate the differences and spatial distribution patterns of metabolites in C. longa L. roots and rhizomes.</p><p><strong>Methods: </strong>Metabolite analysis of roots and rhizomes was conducted using ultra-high-performance liquid chromatography-quadruple orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) combined with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Using principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) to screen for differential metabolites. The relative contents of differential metabolites were visualized using heat maps. Additionally, the spatial distribution of differential metabolites was analyzed based on DESI-MSI.</p><p><strong>Results: </strong>A total of 49 main chemical components were identified in roots and rhizomes using UHPLC-Q-Orbitrap HRMS. Through nontargeted metabolomics analysis combining UHPLC-Q-Orbitrap HRMS with PCA and OPLS-DA, 24 differential markers were identified; Additionally, using DESI-MSI alongside PCA and OPLS-DA, 18 differential markers were selected. Based on the DESI-MSI results, curcuminoids and sesquiterpenoids, including bisdemethoxycurcumin, demethoxycurcumin, furanodienone, furanogermenone, furanodiene, β-elemene, and curzerene, were more abundant in the rhizomes compared to the roots. And these differential compounds exhibited spatial distribution differences in the epidermis, phloem, and xylem between the roots and rhizomes.</p><p><strong>Conclusion: </strong>The metabolomics analysis using UHPLC-Q-Orbitrap HRMS combined with DESI-MSI suggest differences in the accumulation and spatial distribution of metabolites in C. longa L. roots and rhizomes, possibly related to the biosynthesis of secondary metabolites.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.3493\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3493","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Spatial Distribution and Comparative Analysis of Differential Metabolites in Curcuma longa L. Roots and Rhizomes Using UHPLC-Q-Orbitrap HRMS Combined With DESI-MSI.
Introduction: The roots and rhizomes of Curcuma longa L. serve as distinct traditional Chinese medicines with varying therapeutic effects, likely attributed to differences in the accumulation and distribution of metabolites in these parts.
Objective: The study aims to investigate the differences and spatial distribution patterns of metabolites in C. longa L. roots and rhizomes.
Methods: Metabolite analysis of roots and rhizomes was conducted using ultra-high-performance liquid chromatography-quadruple orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) combined with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Using principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) to screen for differential metabolites. The relative contents of differential metabolites were visualized using heat maps. Additionally, the spatial distribution of differential metabolites was analyzed based on DESI-MSI.
Results: A total of 49 main chemical components were identified in roots and rhizomes using UHPLC-Q-Orbitrap HRMS. Through nontargeted metabolomics analysis combining UHPLC-Q-Orbitrap HRMS with PCA and OPLS-DA, 24 differential markers were identified; Additionally, using DESI-MSI alongside PCA and OPLS-DA, 18 differential markers were selected. Based on the DESI-MSI results, curcuminoids and sesquiterpenoids, including bisdemethoxycurcumin, demethoxycurcumin, furanodienone, furanogermenone, furanodiene, β-elemene, and curzerene, were more abundant in the rhizomes compared to the roots. And these differential compounds exhibited spatial distribution differences in the epidermis, phloem, and xylem between the roots and rhizomes.
Conclusion: The metabolomics analysis using UHPLC-Q-Orbitrap HRMS combined with DESI-MSI suggest differences in the accumulation and spatial distribution of metabolites in C. longa L. roots and rhizomes, possibly related to the biosynthesis of secondary metabolites.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.