纳入患者内剂量递增的I期剂量寻找设计。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-12-25 DOI:10.1002/pst.2461
Beibei Guo, Suyu Liu
{"title":"纳入患者内剂量递增的I期剂量寻找设计。","authors":"Beibei Guo, Suyu Liu","doi":"10.1002/pst.2461","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional Phase I trial designs assign a single dose to each patient, necessitating a minimum number of patients per dose to reliably identify the maximum tolerated dose (MTD). However, in many clinical trials, such as those involving pediatric patients or patients with rare cancers, recruiting an adequate number of patients can pose challenges, limiting the applicability of standard trial designs. To address this challenge, we propose a new Phase I dose-finding design, denoted as IP-CRM, that integrates intra-patient dose escalation with the continual reassessment method (CRM). In the IP-CRM design, intra-patient dose escalation is allowed, guided by both individual patients' toxicity outcomes and accumulated data across patients, and the starting dose for each cohort of patients is adaptively updated. We further extend the IP-CRM design to address carryover effects and/or intra-patient correlations. Due to the potential for each patient to contribute multiple data points at varying doses owing to intra-patient dose escalation, the IP-CRM design offers the advantage of determining the MTD with a considerably reduced sample size compared to standard Phase I dose-finding designs. Simulation studies show that our IP-CRM design can efficiently reduce sample size while concurrently enhancing the probability of identifying the MTD when compared with standard CRM designs and the 3 + 3 design.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Phase I Dose-Finding Design Incorporating Intra-Patient Dose Escalation.\",\"authors\":\"Beibei Guo, Suyu Liu\",\"doi\":\"10.1002/pst.2461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional Phase I trial designs assign a single dose to each patient, necessitating a minimum number of patients per dose to reliably identify the maximum tolerated dose (MTD). However, in many clinical trials, such as those involving pediatric patients or patients with rare cancers, recruiting an adequate number of patients can pose challenges, limiting the applicability of standard trial designs. To address this challenge, we propose a new Phase I dose-finding design, denoted as IP-CRM, that integrates intra-patient dose escalation with the continual reassessment method (CRM). In the IP-CRM design, intra-patient dose escalation is allowed, guided by both individual patients' toxicity outcomes and accumulated data across patients, and the starting dose for each cohort of patients is adaptively updated. We further extend the IP-CRM design to address carryover effects and/or intra-patient correlations. Due to the potential for each patient to contribute multiple data points at varying doses owing to intra-patient dose escalation, the IP-CRM design offers the advantage of determining the MTD with a considerably reduced sample size compared to standard Phase I dose-finding designs. Simulation studies show that our IP-CRM design can efficiently reduce sample size while concurrently enhancing the probability of identifying the MTD when compared with standard CRM designs and the 3 + 3 design.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2461\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2461","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

传统的I期试验设计为每位患者分配单一剂量,需要每个剂量的最小患者数量,以可靠地确定最大耐受剂量(MTD)。然而,在许多临床试验中,例如涉及儿科患者或罕见癌症患者的临床试验,招募足够数量的患者可能会带来挑战,限制了标准试验设计的适用性。为了应对这一挑战,我们提出了一种新的I期剂量发现设计,称为IP-CRM,将患者内剂量递增与持续重新评估方法(CRM)相结合。在IP-CRM设计中,允许在个体患者毒性结果和患者累积数据的指导下进行患者内部剂量递增,并且每个患者队列的起始剂量可自适应更新。我们进一步扩展了IP-CRM设计,以解决遗留效应和/或患者内部相关性。由于每位患者在不同剂量下,由于患者内部剂量的增加,有可能提供多个数据点,因此IP-CRM设计的优势在于,与标准I期剂量发现设计相比,其样本量大大减少,可以确定MTD。仿真研究表明,与标准CRM设计和3 + 3设计相比,IP-CRM设计可以有效地减少样本量,同时提高识别MTD的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Phase I Dose-Finding Design Incorporating Intra-Patient Dose Escalation.

Conventional Phase I trial designs assign a single dose to each patient, necessitating a minimum number of patients per dose to reliably identify the maximum tolerated dose (MTD). However, in many clinical trials, such as those involving pediatric patients or patients with rare cancers, recruiting an adequate number of patients can pose challenges, limiting the applicability of standard trial designs. To address this challenge, we propose a new Phase I dose-finding design, denoted as IP-CRM, that integrates intra-patient dose escalation with the continual reassessment method (CRM). In the IP-CRM design, intra-patient dose escalation is allowed, guided by both individual patients' toxicity outcomes and accumulated data across patients, and the starting dose for each cohort of patients is adaptively updated. We further extend the IP-CRM design to address carryover effects and/or intra-patient correlations. Due to the potential for each patient to contribute multiple data points at varying doses owing to intra-patient dose escalation, the IP-CRM design offers the advantage of determining the MTD with a considerably reduced sample size compared to standard Phase I dose-finding designs. Simulation studies show that our IP-CRM design can efficiently reduce sample size while concurrently enhancing the probability of identifying the MTD when compared with standard CRM designs and the 3 + 3 design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
A Federated Data Analysis Approach for the Evaluation of Surrogate Endpoints. Approximate Bayesian Analysis for Borrowing External Controls for Randomized Controlled Trials With Dynamic Borrowing and Covariate Balancing Adjustment. Trial Probability of Success for Testing 3-Way PK/PD Similarity With Multiple Endpoints. Introduction to qualification and validation of an immunoassay. What they forgot to tell you about machine learning with an application to pharmaceutical manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1