{"title":"结合UPLC-MS/MS生物信息学和体内实验验证阐明文子解毒汤抑制结直肠癌的机制。","authors":"Tianqing Sang, Aoshengxiong Liang, Hongli Zhou, Wenli Qiu, Lijing Shi, Hongguang Zhou","doi":"10.1002/pca.3495","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), bioinformatics, and in vivo experiments to study the anti-colorectal cancer (CRC) effects of Wenzi Jiedu Decoction (WJD).</p><p><strong>Methods: </strong>Detected the main components of WJD by UPLC-MS/MS. Obtained WJD targets and CRC targets through the open source database. Analyzed the WJD-CRC targets from a macro perspective by PPI, GO, and KEGG analyses. Validated bioinformatics findings by molecular docking and animal experiments.</p><p><strong>Results: </strong>This study obtained 91 active compounds and 240 targets of WJD. Intersection with CRC genes (GSE32323 388 DEGs, GSE 215510 1253 DEGs), 36 WJD-CRC common targets were obtained. PPI and enrichment analyses indicated WJD exerted anti-CRC effects mainly through the chemokine signaling pathway and apoptosis. Quercetin, Luteolin, Kaempferol, Formononetin, Stigmasterol, and Hederagenin were the main compounds of WJD. CXCL8, BCL-2, BAX, BCL2L1, CASP3, AKT1, and TP53 were the core targets of WJD-CRC. Bulk molecular docking showed that core WJD compounds had good docking activity with WJD-CRC targets. Animal experiments had shown the tumor inhibition rate of the WJD group was 36.53%. WJD could regulate the ratio of CD4+, CD8+, and CD4+/CD8+, reduce the expression of CXCL8, and BCL-2, and increase the expression of BAX.</p><p><strong>Conclusions: </strong>This study indicated that the potential mechanism of WJD in the prevention and treatment of CRC had the characteristics of the multi-target, multi-path, and multi-system mechanisms, which were mainly related to the regulation of chemokines and the promotion of apoptosis.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating UPLC-MS/MS Bioinformatics and In Vivo Experiments Validation to Elucidate the Mechanism of Wenzi Jiedu Decoction in Suppressing Colorectal Cancer.\",\"authors\":\"Tianqing Sang, Aoshengxiong Liang, Hongli Zhou, Wenli Qiu, Lijing Shi, Hongguang Zhou\",\"doi\":\"10.1002/pca.3495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), bioinformatics, and in vivo experiments to study the anti-colorectal cancer (CRC) effects of Wenzi Jiedu Decoction (WJD).</p><p><strong>Methods: </strong>Detected the main components of WJD by UPLC-MS/MS. Obtained WJD targets and CRC targets through the open source database. Analyzed the WJD-CRC targets from a macro perspective by PPI, GO, and KEGG analyses. Validated bioinformatics findings by molecular docking and animal experiments.</p><p><strong>Results: </strong>This study obtained 91 active compounds and 240 targets of WJD. Intersection with CRC genes (GSE32323 388 DEGs, GSE 215510 1253 DEGs), 36 WJD-CRC common targets were obtained. PPI and enrichment analyses indicated WJD exerted anti-CRC effects mainly through the chemokine signaling pathway and apoptosis. Quercetin, Luteolin, Kaempferol, Formononetin, Stigmasterol, and Hederagenin were the main compounds of WJD. CXCL8, BCL-2, BAX, BCL2L1, CASP3, AKT1, and TP53 were the core targets of WJD-CRC. Bulk molecular docking showed that core WJD compounds had good docking activity with WJD-CRC targets. Animal experiments had shown the tumor inhibition rate of the WJD group was 36.53%. WJD could regulate the ratio of CD4+, CD8+, and CD4+/CD8+, reduce the expression of CXCL8, and BCL-2, and increase the expression of BAX.</p><p><strong>Conclusions: </strong>This study indicated that the potential mechanism of WJD in the prevention and treatment of CRC had the characteristics of the multi-target, multi-path, and multi-system mechanisms, which were mainly related to the regulation of chemokines and the promotion of apoptosis.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.3495\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3495","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Integrating UPLC-MS/MS Bioinformatics and In Vivo Experiments Validation to Elucidate the Mechanism of Wenzi Jiedu Decoction in Suppressing Colorectal Cancer.
Objectives: We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), bioinformatics, and in vivo experiments to study the anti-colorectal cancer (CRC) effects of Wenzi Jiedu Decoction (WJD).
Methods: Detected the main components of WJD by UPLC-MS/MS. Obtained WJD targets and CRC targets through the open source database. Analyzed the WJD-CRC targets from a macro perspective by PPI, GO, and KEGG analyses. Validated bioinformatics findings by molecular docking and animal experiments.
Results: This study obtained 91 active compounds and 240 targets of WJD. Intersection with CRC genes (GSE32323 388 DEGs, GSE 215510 1253 DEGs), 36 WJD-CRC common targets were obtained. PPI and enrichment analyses indicated WJD exerted anti-CRC effects mainly through the chemokine signaling pathway and apoptosis. Quercetin, Luteolin, Kaempferol, Formononetin, Stigmasterol, and Hederagenin were the main compounds of WJD. CXCL8, BCL-2, BAX, BCL2L1, CASP3, AKT1, and TP53 were the core targets of WJD-CRC. Bulk molecular docking showed that core WJD compounds had good docking activity with WJD-CRC targets. Animal experiments had shown the tumor inhibition rate of the WJD group was 36.53%. WJD could regulate the ratio of CD4+, CD8+, and CD4+/CD8+, reduce the expression of CXCL8, and BCL-2, and increase the expression of BAX.
Conclusions: This study indicated that the potential mechanism of WJD in the prevention and treatment of CRC had the characteristics of the multi-target, multi-path, and multi-system mechanisms, which were mainly related to the regulation of chemokines and the promotion of apoptosis.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.