Asim Iqbal Bazaz, Tasaduq H Shah, Farooz A Bhat, Irfan Ahmad, Basdeo Kushwaha, Ravindra Kumar, Adnan Abubakr, Bilal A Bhat, Rizwana Malik, Nafhat-Ul-Arab Naqshbandi
{"title":"利用热冲击处理克什米尔喜马拉雅山虹鳟鱼(Oncorhynchus mykiss),通过染色体组操作生产不育鳟鱼(三倍体)。","authors":"Asim Iqbal Bazaz, Tasaduq H Shah, Farooz A Bhat, Irfan Ahmad, Basdeo Kushwaha, Ravindra Kumar, Adnan Abubakr, Bilal A Bhat, Rizwana Malik, Nafhat-Ul-Arab Naqshbandi","doi":"10.1017/S0967199424000509","DOIUrl":null,"url":null,"abstract":"<p><p>Rainbow trout (<i>Oncorhynchus mykiss</i>) is a promising cultivable fish species with significant potential for expansion. As a cold-water fish belonging to the Salmonidae family, it requires an optimal temperature range of 10-15°C for optimal growth. This study explores a method for producing sterile rainbow trout with maximum survival rates by using heat shock treatment to enhance growth characteristics and improve aquaculture practices. A control group and four heat shock treatments were given at 26°C and 28°C for 10 min, applied 15 and 20 min after the mixing of eggs and milt, using a water bath. Among the treated groups, the highest fertilisation, hatching and yolk sac absorption rates were 90.3 ± 0.3%, 81.8 ± 0.8% and 83.9 ± 0.5%, respectively. The highest triploidy rate of 76.6 ± 3.3% was observed with a heat shock at 28°C, 20 min after fertilisation. In contrast, none of the fish from the control group were triploids. The control group demonstrated higher survival rates at fertilisation (93.1 ± 0.4%), hatching (84.2 ± 0.4%) and complete yolk sac absorption (86.2 ± 0.5%) compared to the heat-shocked groups. The diploid and triploid chromosome numbers in rainbow trout were determined to be 2n = 60 and 3n = 91, respectively. This study confirms that heat shock treatment can effectively induce triploidy in rainbow trout, with significant variations in triploidy rates depending on the temperature and timing of the shock. While heat shock can enhance the production of sterile fish, it is essential to balance the treatment parameters to maintain high survival rates. These findings contribute to the optimisation of triploidy induction techniques and support the advancement of aquaculture practices by improving the growth, management and survival rates of rainbow trout which could significantly benefit aquaculture efficiency and sustainability.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"1-9"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of sterile trout (Triploids) by chromosome set manipulation using thermal shock treatment in rainbow trout (<i>Oncorhynchus mykiss</i>) from Kashmir Himalayas.\",\"authors\":\"Asim Iqbal Bazaz, Tasaduq H Shah, Farooz A Bhat, Irfan Ahmad, Basdeo Kushwaha, Ravindra Kumar, Adnan Abubakr, Bilal A Bhat, Rizwana Malik, Nafhat-Ul-Arab Naqshbandi\",\"doi\":\"10.1017/S0967199424000509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rainbow trout (<i>Oncorhynchus mykiss</i>) is a promising cultivable fish species with significant potential for expansion. As a cold-water fish belonging to the Salmonidae family, it requires an optimal temperature range of 10-15°C for optimal growth. This study explores a method for producing sterile rainbow trout with maximum survival rates by using heat shock treatment to enhance growth characteristics and improve aquaculture practices. A control group and four heat shock treatments were given at 26°C and 28°C for 10 min, applied 15 and 20 min after the mixing of eggs and milt, using a water bath. Among the treated groups, the highest fertilisation, hatching and yolk sac absorption rates were 90.3 ± 0.3%, 81.8 ± 0.8% and 83.9 ± 0.5%, respectively. The highest triploidy rate of 76.6 ± 3.3% was observed with a heat shock at 28°C, 20 min after fertilisation. In contrast, none of the fish from the control group were triploids. The control group demonstrated higher survival rates at fertilisation (93.1 ± 0.4%), hatching (84.2 ± 0.4%) and complete yolk sac absorption (86.2 ± 0.5%) compared to the heat-shocked groups. The diploid and triploid chromosome numbers in rainbow trout were determined to be 2n = 60 and 3n = 91, respectively. This study confirms that heat shock treatment can effectively induce triploidy in rainbow trout, with significant variations in triploidy rates depending on the temperature and timing of the shock. While heat shock can enhance the production of sterile fish, it is essential to balance the treatment parameters to maintain high survival rates. These findings contribute to the optimisation of triploidy induction techniques and support the advancement of aquaculture practices by improving the growth, management and survival rates of rainbow trout which could significantly benefit aquaculture efficiency and sustainability.</p>\",\"PeriodicalId\":24075,\"journal\":{\"name\":\"Zygote\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zygote\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0967199424000509\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zygote","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0967199424000509","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Production of sterile trout (Triploids) by chromosome set manipulation using thermal shock treatment in rainbow trout (Oncorhynchus mykiss) from Kashmir Himalayas.
Rainbow trout (Oncorhynchus mykiss) is a promising cultivable fish species with significant potential for expansion. As a cold-water fish belonging to the Salmonidae family, it requires an optimal temperature range of 10-15°C for optimal growth. This study explores a method for producing sterile rainbow trout with maximum survival rates by using heat shock treatment to enhance growth characteristics and improve aquaculture practices. A control group and four heat shock treatments were given at 26°C and 28°C for 10 min, applied 15 and 20 min after the mixing of eggs and milt, using a water bath. Among the treated groups, the highest fertilisation, hatching and yolk sac absorption rates were 90.3 ± 0.3%, 81.8 ± 0.8% and 83.9 ± 0.5%, respectively. The highest triploidy rate of 76.6 ± 3.3% was observed with a heat shock at 28°C, 20 min after fertilisation. In contrast, none of the fish from the control group were triploids. The control group demonstrated higher survival rates at fertilisation (93.1 ± 0.4%), hatching (84.2 ± 0.4%) and complete yolk sac absorption (86.2 ± 0.5%) compared to the heat-shocked groups. The diploid and triploid chromosome numbers in rainbow trout were determined to be 2n = 60 and 3n = 91, respectively. This study confirms that heat shock treatment can effectively induce triploidy in rainbow trout, with significant variations in triploidy rates depending on the temperature and timing of the shock. While heat shock can enhance the production of sterile fish, it is essential to balance the treatment parameters to maintain high survival rates. These findings contribute to the optimisation of triploidy induction techniques and support the advancement of aquaculture practices by improving the growth, management and survival rates of rainbow trout which could significantly benefit aquaculture efficiency and sustainability.
期刊介绍:
An international journal dedicated to the rapid publication of original research in early embryology, Zygote covers interdisciplinary studies on gametogenesis through fertilization to gastrulation in animals and humans. The scope has been expanded to include clinical papers, molecular and developmental genetics. The editors will favour work describing fundamental processes in the cellular and molecular mechanisms of animal development, and, in particular, the identification of unifying principles in biology. Nonetheless, new technologies, review articles, debates and letters will become a prominent feature.