通过推断家族谱系来增强患者表征学习,可以提高疾病风险预测。

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of the American Medical Informatics Association Pub Date : 2024-12-26 DOI:10.1093/jamia/ocae297
Xiayuan Huang, Jatin Arora, Abdullah Mesut Erzurumluoglu, Stephen A Stanhope, Daniel Lam, Hongyu Zhao, Zhihao Ding, Zuoheng Wang, Johann de Jong
{"title":"通过推断家族谱系来增强患者表征学习,可以提高疾病风险预测。","authors":"Xiayuan Huang, Jatin Arora, Abdullah Mesut Erzurumluoglu, Stephen A Stanhope, Daniel Lam, Hongyu Zhao, Zhihao Ding, Zuoheng Wang, Johann de Jong","doi":"10.1093/jamia/ocae297","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning and deep learning are powerful tools for analyzing electronic health records (EHRs) in healthcare research. Although family health history has been recognized as a major predictor for a wide spectrum of diseases, research has so far adopted a limited view of family relations, essentially treating patients as independent samples in the analysis.</p><p><strong>Methods: </strong>To address this gap, we present ALIGATEHR, which models inferred family relations in a graph attention network augmented with an attention-based medical ontology representation, thus accounting for the complex influence of genetics, shared environmental exposures, and disease dependencies.</p><p><strong>Results: </strong>Taking disease risk prediction as a use case, we demonstrate that explicitly modeling family relations significantly improves predictions across the disease spectrum. We then show how ALIGATEHR's attention mechanism, which links patients' disease risk to their relatives' clinical profiles, successfully captures genetic aspects of diseases using longitudinal EHR diagnosis data. Finally, we use ALIGATEHR to successfully distinguish the 2 main inflammatory bowel disease subtypes with highly shared risk factors and symptoms (Crohn's disease and ulcerative colitis).</p><p><strong>Conclusion: </strong>Overall, our results highlight that family relations should not be overlooked in EHR research and illustrate ALIGATEHR's great potential for enhancing patient representation learning for predictive and interpretable modeling of EHRs.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing patient representation learning with inferred family pedigrees improves disease risk prediction.\",\"authors\":\"Xiayuan Huang, Jatin Arora, Abdullah Mesut Erzurumluoglu, Stephen A Stanhope, Daniel Lam, Hongyu Zhao, Zhihao Ding, Zuoheng Wang, Johann de Jong\",\"doi\":\"10.1093/jamia/ocae297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Machine learning and deep learning are powerful tools for analyzing electronic health records (EHRs) in healthcare research. Although family health history has been recognized as a major predictor for a wide spectrum of diseases, research has so far adopted a limited view of family relations, essentially treating patients as independent samples in the analysis.</p><p><strong>Methods: </strong>To address this gap, we present ALIGATEHR, which models inferred family relations in a graph attention network augmented with an attention-based medical ontology representation, thus accounting for the complex influence of genetics, shared environmental exposures, and disease dependencies.</p><p><strong>Results: </strong>Taking disease risk prediction as a use case, we demonstrate that explicitly modeling family relations significantly improves predictions across the disease spectrum. We then show how ALIGATEHR's attention mechanism, which links patients' disease risk to their relatives' clinical profiles, successfully captures genetic aspects of diseases using longitudinal EHR diagnosis data. Finally, we use ALIGATEHR to successfully distinguish the 2 main inflammatory bowel disease subtypes with highly shared risk factors and symptoms (Crohn's disease and ulcerative colitis).</p><p><strong>Conclusion: </strong>Overall, our results highlight that family relations should not be overlooked in EHR research and illustrate ALIGATEHR's great potential for enhancing patient representation learning for predictive and interpretable modeling of EHRs.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae297\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae297","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:机器学习和深度学习是医疗保健研究中分析电子健康记录(EHRs)的强大工具。虽然家族健康史已被认为是广泛疾病的主要预测因素,但迄今为止的研究对家庭关系的看法有限,基本上将患者视为分析中的独立样本。方法:为了解决这一差距,我们提出了ALIGATEHR,它在一个基于注意的医学本体表示增强的图注意网络中建模推断家庭关系,从而考虑了遗传、共享环境暴露和疾病依赖的复杂影响。结果:以疾病风险预测为用例,我们证明了明确建模家庭关系显着提高了整个疾病谱的预测。然后,我们展示了ALIGATEHR的注意力机制,它将患者的疾病风险与其亲属的临床概况联系起来,如何成功地利用纵向电子病历诊断数据捕获疾病的遗传方面。最后,我们使用ALIGATEHR成功区分了两种主要的炎症性肠病亚型,它们具有高度共同的危险因素和症状(克罗恩病和溃疡性结肠炎)。结论:总的来说,我们的研究结果强调了家庭关系在电子病历研究中不应被忽视,并说明了ALIGATEHR在增强患者表征学习以实现电子病历预测和可解释建模方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing patient representation learning with inferred family pedigrees improves disease risk prediction.

Background: Machine learning and deep learning are powerful tools for analyzing electronic health records (EHRs) in healthcare research. Although family health history has been recognized as a major predictor for a wide spectrum of diseases, research has so far adopted a limited view of family relations, essentially treating patients as independent samples in the analysis.

Methods: To address this gap, we present ALIGATEHR, which models inferred family relations in a graph attention network augmented with an attention-based medical ontology representation, thus accounting for the complex influence of genetics, shared environmental exposures, and disease dependencies.

Results: Taking disease risk prediction as a use case, we demonstrate that explicitly modeling family relations significantly improves predictions across the disease spectrum. We then show how ALIGATEHR's attention mechanism, which links patients' disease risk to their relatives' clinical profiles, successfully captures genetic aspects of diseases using longitudinal EHR diagnosis data. Finally, we use ALIGATEHR to successfully distinguish the 2 main inflammatory bowel disease subtypes with highly shared risk factors and symptoms (Crohn's disease and ulcerative colitis).

Conclusion: Overall, our results highlight that family relations should not be overlooked in EHR research and illustrate ALIGATEHR's great potential for enhancing patient representation learning for predictive and interpretable modeling of EHRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
期刊最新文献
Efficacy of the mLab App: a randomized clinical trial for increasing HIV testing uptake using mobile technology. Using human factors methods to mitigate bias in artificial intelligence-based clinical decision support. Distributed, immutable, and transparent biomedical limited data set request management on multi-capacity network. Identifying stigmatizing and positive/preferred language in obstetric clinical notes using natural language processing. National COVID Cohort Collaborative data enhancements: a path for expanding common data models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1