一种优化抗生素联合治疗的机制方法。

IF 2 4区 生物学 Q2 BIOLOGY Biosystems Pub Date : 2025-02-01 DOI:10.1016/j.biosystems.2024.105385
F. Clarelli , P.O. Ankomah , H. Weiss , J.M. Conway , G. Forsdahl , P. Abel zur Wiesch
{"title":"一种优化抗生素联合治疗的机制方法。","authors":"F. Clarelli ,&nbsp;P.O. Ankomah ,&nbsp;H. Weiss ,&nbsp;J.M. Conway ,&nbsp;G. Forsdahl ,&nbsp;P. Abel zur Wiesch","doi":"10.1016/j.biosystems.2024.105385","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial resistance is one of the most significant healthcare challenges of our times. Multidrug or combination therapies are sometimes required to treat severe infections; for example, the current protocols to treat pulmonary tuberculosis combine several antibiotics. However, combination therapy is usually based on lengthy empirical trials, and it is difficult to predict its efficacy. We propose a new tool to identify antibiotic synergy or antagonism and optimize combination therapies. Our model explicitly incorporates the mechanisms of individual drug action and estimates their combined effect using a mechanistic approach. By quantifying the impact on growth and death of a bacterial population, we can identify optimal combinations of multiple drugs. Our approach also allows for the investigation of the drugs’ actions and the testing of theoretical hypotheses.</div><div>We demonstrate the utility of this tool with in vitro <em>Escherichia coli</em> data using a combination of ampicillin and ciprofloxacin. In contrast to previous interpretations, our model finds a slight synergy between the antibiotics. Our mechanistic model allows investigating possible causes of the synergy.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"248 ","pages":"Article 105385"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanistic approach to optimize combination antibiotic therapy\",\"authors\":\"F. Clarelli ,&nbsp;P.O. Ankomah ,&nbsp;H. Weiss ,&nbsp;J.M. Conway ,&nbsp;G. Forsdahl ,&nbsp;P. Abel zur Wiesch\",\"doi\":\"10.1016/j.biosystems.2024.105385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antimicrobial resistance is one of the most significant healthcare challenges of our times. Multidrug or combination therapies are sometimes required to treat severe infections; for example, the current protocols to treat pulmonary tuberculosis combine several antibiotics. However, combination therapy is usually based on lengthy empirical trials, and it is difficult to predict its efficacy. We propose a new tool to identify antibiotic synergy or antagonism and optimize combination therapies. Our model explicitly incorporates the mechanisms of individual drug action and estimates their combined effect using a mechanistic approach. By quantifying the impact on growth and death of a bacterial population, we can identify optimal combinations of multiple drugs. Our approach also allows for the investigation of the drugs’ actions and the testing of theoretical hypotheses.</div><div>We demonstrate the utility of this tool with in vitro <em>Escherichia coli</em> data using a combination of ampicillin and ciprofloxacin. In contrast to previous interpretations, our model finds a slight synergy between the antibiotics. Our mechanistic model allows investigating possible causes of the synergy.</div></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"248 \",\"pages\":\"Article 105385\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724002703\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724002703","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性是我们这个时代最重大的医疗保健挑战之一。有时需要多种药物或联合治疗来治疗严重感染;例如,目前治疗肺结核的方案结合了几种抗生素。然而,联合治疗通常是基于长期的经验试验,很难预测其疗效。我们提出了一个新的工具,以确定抗生素协同或拮抗和优化联合治疗。我们的模型明确地结合了单个药物作用的机制,并使用机制方法估计它们的综合效应。通过量化对细菌种群生长和死亡的影响,我们可以确定多种药物的最佳组合。我们的方法也允许研究药物的作用和理论假设的测试。我们用氨苄西林和环丙沙星联合使用的体外大肠杆菌数据证明了该工具的实用性。与之前的解释相反,我们的模型发现抗生素之间有轻微的协同作用。我们的机制模型允许调查协同作用的可能原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mechanistic approach to optimize combination antibiotic therapy
Antimicrobial resistance is one of the most significant healthcare challenges of our times. Multidrug or combination therapies are sometimes required to treat severe infections; for example, the current protocols to treat pulmonary tuberculosis combine several antibiotics. However, combination therapy is usually based on lengthy empirical trials, and it is difficult to predict its efficacy. We propose a new tool to identify antibiotic synergy or antagonism and optimize combination therapies. Our model explicitly incorporates the mechanisms of individual drug action and estimates their combined effect using a mechanistic approach. By quantifying the impact on growth and death of a bacterial population, we can identify optimal combinations of multiple drugs. Our approach also allows for the investigation of the drugs’ actions and the testing of theoretical hypotheses.
We demonstrate the utility of this tool with in vitro Escherichia coli data using a combination of ampicillin and ciprofloxacin. In contrast to previous interpretations, our model finds a slight synergy between the antibiotics. Our mechanistic model allows investigating possible causes of the synergy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
期刊最新文献
A mechanistic approach to optimize combination antibiotic therapy Stages and causes of the evolution of language and consciousness: A theoretical reconstruction Neural networks through the lens of evolutionary dynamics Cholesterol-ester prevents lipoprotein core from solidifying: Molecular dynamics simulation On the infodynamics of ramifications in constructal design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1