基于多任务学习的分子电子结构耦合聚类精度逼近。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-12-27 DOI:10.1038/s43588-024-00747-9
Hao Tang, Brian Xiao, Wenhao He, Pero Subasic, Avetik R Harutyunyan, Yao Wang, Fang Liu, Haowei Xu, Ju Li
{"title":"基于多任务学习的分子电子结构耦合聚类精度逼近。","authors":"Hao Tang, Brian Xiao, Wenhao He, Pero Subasic, Avetik R Harutyunyan, Yao Wang, Fang Liu, Haowei Xu, Ju Li","doi":"10.1038/s43588-024-00747-9","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties. We apply the model to aromatic compounds and semiconducting polymers, evaluating both ground- and excited-state properties. The results demonstrate the model's accuracy and generalization capability to complex systems that cannot be calculated using CCSD(T)-level methods due to scaling.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approaching coupled-cluster accuracy for molecular electronic structures with multi-task learning.\",\"authors\":\"Hao Tang, Brian Xiao, Wenhao He, Pero Subasic, Avetik R Harutyunyan, Yao Wang, Fang Liu, Haowei Xu, Ju Li\",\"doi\":\"10.1038/s43588-024-00747-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties. We apply the model to aromatic compounds and semiconducting polymers, evaluating both ground- and excited-state properties. The results demonstrate the model's accuracy and generalization capability to complex systems that cannot be calculated using CCSD(T)-level methods due to scaling.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-024-00747-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00747-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习在量子化学中发挥着重要作用,为分子的各种性质提供了快速评估的预测模型;然而,大多数现有的分子电子特性机器学习模型在训练中使用密度泛函理论(DFT)数据库作为基础真值,其预测精度无法超过DFT。在这项工作中,我们开发了一种统一的有机分子电子结构的机器学习方法,使用金标准CCSD(T)计算作为训练数据。在碳氢化合物分子上进行的测试表明,我们的模型在计算成本和各种量子化学性质的预测精度方面都优于具有几种广泛使用的杂化和双杂化泛函的DFT。我们将该模型应用于芳香族化合物和半导体聚合物,评估基态和激发态性质。结果表明,该模型具有较好的精度和泛化能力,可以应用于CCSD(T)级方法无法计算的复杂系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approaching coupled-cluster accuracy for molecular electronic structures with multi-task learning.

Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties. We apply the model to aromatic compounds and semiconducting polymers, evaluating both ground- and excited-state properties. The results demonstrate the model's accuracy and generalization capability to complex systems that cannot be calculated using CCSD(T)-level methods due to scaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Enhancing synthesis prediction via machine learning. Harnessing large language models for data-scarce learning of polymer properties. A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies. MultiSTAAR delivers multi-trait rare variant analysis of biobank-scale sequencing data. Balancing autonomy and expertise in autonomous synthesis laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1