建立高质量卫生数据基础:比利时多医院案例研究。

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2024-12-20 DOI:10.2196/60244
Jens Declerck, Bert Vandenberk, Mieke Deschepper, Kirsten Colpaert, Lieselot Cool, Jens Goemaere, Mona Bové, Frank Staelens, Koen De Meester, Eva Verbeke, Elke Smits, Cami De Decker, Nicky Van Der Vekens, Elin Pauwels, Robert Vander Stichele, Dipak Kalra, Pascal Coorevits
{"title":"建立高质量卫生数据基础:比利时多医院案例研究。","authors":"Jens Declerck, Bert Vandenberk, Mieke Deschepper, Kirsten Colpaert, Lieselot Cool, Jens Goemaere, Mona Bové, Frank Staelens, Koen De Meester, Eva Verbeke, Elke Smits, Cami De Decker, Nicky Van Der Vekens, Elin Pauwels, Robert Vander Stichele, Dipak Kalra, Pascal Coorevits","doi":"10.2196/60244","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Data quality is fundamental to maintaining the trust and reliability of health data for both primary and secondary purposes. However, before the secondary use of health data, it is essential to assess the quality at the source and to develop systematic methods for the assessment of important data quality dimensions.</p><p><strong>Objective: </strong>This case study aims to offer a dual aim-to assess the data quality of height and weight measurements across 7 Belgian hospitals, focusing on the dimensions of completeness and consistency, and to outline the obstacles these hospitals face in sharing and improving data quality standards.</p><p><strong>Methods: </strong>Focusing on data quality dimensions completeness and consistency, this study examined height and weight data collected from 2021 to 2022 within 3 distinct departments-surgical, geriatrics, and pediatrics-in each of the 7 hospitals.</p><p><strong>Results: </strong>Variability was observed in the completeness scores for height across hospitals and departments, especially within surgical and geriatric wards. In contrast, weight data uniformly achieved high completeness scores. Notably, the consistency of height and weight data recording was uniformly high across all departments.</p><p><strong>Conclusions: </strong>A collective collaboration among Belgian hospitals, transcending network affiliations, was formed to conduct this data quality assessment. This study demonstrates the potential for improving data quality across health care organizations by sharing knowledge and good practices, establishing a foundation for future, similar research.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e60244"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683741/pdf/","citationCount":"0","resultStr":"{\"title\":\"Building a Foundation for High-Quality Health Data: Multihospital Case Study in Belgium.\",\"authors\":\"Jens Declerck, Bert Vandenberk, Mieke Deschepper, Kirsten Colpaert, Lieselot Cool, Jens Goemaere, Mona Bové, Frank Staelens, Koen De Meester, Eva Verbeke, Elke Smits, Cami De Decker, Nicky Van Der Vekens, Elin Pauwels, Robert Vander Stichele, Dipak Kalra, Pascal Coorevits\",\"doi\":\"10.2196/60244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Data quality is fundamental to maintaining the trust and reliability of health data for both primary and secondary purposes. However, before the secondary use of health data, it is essential to assess the quality at the source and to develop systematic methods for the assessment of important data quality dimensions.</p><p><strong>Objective: </strong>This case study aims to offer a dual aim-to assess the data quality of height and weight measurements across 7 Belgian hospitals, focusing on the dimensions of completeness and consistency, and to outline the obstacles these hospitals face in sharing and improving data quality standards.</p><p><strong>Methods: </strong>Focusing on data quality dimensions completeness and consistency, this study examined height and weight data collected from 2021 to 2022 within 3 distinct departments-surgical, geriatrics, and pediatrics-in each of the 7 hospitals.</p><p><strong>Results: </strong>Variability was observed in the completeness scores for height across hospitals and departments, especially within surgical and geriatric wards. In contrast, weight data uniformly achieved high completeness scores. Notably, the consistency of height and weight data recording was uniformly high across all departments.</p><p><strong>Conclusions: </strong>A collective collaboration among Belgian hospitals, transcending network affiliations, was formed to conduct this data quality assessment. This study demonstrates the potential for improving data quality across health care organizations by sharing knowledge and good practices, establishing a foundation for future, similar research.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"12 \",\"pages\":\"e60244\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683741/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/60244\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/60244","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:数据质量对于维持主要和次要目的卫生数据的信任和可靠性至关重要。然而,在二次使用卫生数据之前,必须从源头评估数据质量,并制定评估重要数据质量方面的系统方法。目的:本案例研究旨在提供双重目标——评估7家比利时医院的身高和体重测量数据质量,重点关注完整性和一致性的维度,并概述这些医院在共享和改进数据质量标准方面面临的障碍。方法:着眼于数据质量维度的完整性和一致性,本研究检查了7家医院中每家医院的3个不同科室(外科、老年科和儿科)在2021年至2022年收集的身高和体重数据。结果:不同医院和科室的身高完整性评分存在差异,尤其是外科和老年病房。相比之下,权重数据一致获得了较高的完备性分数。值得注意的是,所有部门的身高和体重数据记录一致性一致。结论:比利时医院之间的集体合作,超越网络隶属关系,形成了进行数据质量评估。该研究表明,通过共享知识和良好实践,为未来的类似研究奠定基础,可以提高整个医疗保健组织的数据质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building a Foundation for High-Quality Health Data: Multihospital Case Study in Belgium.

Background: Data quality is fundamental to maintaining the trust and reliability of health data for both primary and secondary purposes. However, before the secondary use of health data, it is essential to assess the quality at the source and to develop systematic methods for the assessment of important data quality dimensions.

Objective: This case study aims to offer a dual aim-to assess the data quality of height and weight measurements across 7 Belgian hospitals, focusing on the dimensions of completeness and consistency, and to outline the obstacles these hospitals face in sharing and improving data quality standards.

Methods: Focusing on data quality dimensions completeness and consistency, this study examined height and weight data collected from 2021 to 2022 within 3 distinct departments-surgical, geriatrics, and pediatrics-in each of the 7 hospitals.

Results: Variability was observed in the completeness scores for height across hospitals and departments, especially within surgical and geriatric wards. In contrast, weight data uniformly achieved high completeness scores. Notably, the consistency of height and weight data recording was uniformly high across all departments.

Conclusions: A collective collaboration among Belgian hospitals, transcending network affiliations, was formed to conduct this data quality assessment. This study demonstrates the potential for improving data quality across health care organizations by sharing knowledge and good practices, establishing a foundation for future, similar research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Identification of Clusters in a Population With Obesity Using Machine Learning: Secondary Analysis of The Maastricht Study. Electronic Health Record Use Patterns Among Well-Being Survey Responders and Nonresponders: Longitudinal Observational Study. Machine Learning-Based Risk Factor Analysis and Prediction Model Construction for the Occurrence of Chronic Heart Failure: Health Ecologic Study. Smart Contracts and Shared Platforms in Sustainable Health Care: Systematic Review. Diagnostic Decision-Making Variability Between Novice and Expert Optometrists for Glaucoma: Comparative Analysis to Inform AI System Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1