{"title":"Machine Learning-Based Risk Factor Analysis and Prediction Model Construction for the Occurrence of Chronic Heart Failure: Health Ecologic Study.","authors":"Qian Xu, Xue Cai, Ruicong Yu, Yueyue Zheng, Guanjie Chen, Hui Sun, Tianyun Gao, Cuirong Xu, Jing Sun","doi":"10.2196/64972","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic heart failure (CHF) is a serious threat to human health, with high morbidity and mortality rates, imposing a heavy burden on the health care system and society. With the abundance of medical data and the rapid development of machine learning (ML) technologies, new opportunities are provided for in-depth investigation of the mechanisms of CHF and the construction of predictive models. The introduction of health ecology research methodology enables a comprehensive dissection of CHF risk factors from a wider range of environmental, social, and individual factors. This not only helps to identify high-risk groups at an early stage but also provides a scientific basis for the development of precise prevention and intervention strategies.</p><p><strong>Objective: </strong>This study aims to use ML to construct a predictive model of the risk of occurrence of CHF and analyze the risk of CHF from a health ecology perspective.</p><p><strong>Methods: </strong>This study sourced data from the Jackson Heart Study database. Stringent data preprocessing procedures were implemented, which included meticulous management of missing values and the standardization of data. Principal component analysis and random forest (RF) were used as feature selection techniques. Subsequently, several ML models, namely decision tree, RF, extreme gradient boosting, adaptive boosting (AdaBoost), support vector machine, naive Bayes model, multilayer perceptron, and bootstrap forest, were constructed, and their performance was evaluated. The effectiveness of the models was validated through internal validation using a 10-fold cross-validation approach on the training and validation sets. In addition, the performance metrics of each model, including accuracy, precision, sensitivity, F<sub>1</sub>-score, and area under the curve (AUC), were compared. After selecting the best model, we used hyperparameter optimization to construct a better model.</p><p><strong>Results: </strong>RF-selected features (21 in total) had an average root mean square error of 0.30, outperforming principal component analysis. Synthetic Minority Oversampling Technique and Edited Nearest Neighbors showed better accuracy in data balancing. The AdaBoost model was most effective with an AUC of 0.86, accuracy of 75.30%, precision of 0.86, sensitivity of 0.69, and F<sub>1</sub>-score of 0.76. Validation on the training and validation sets through 10-fold cross-validation gave an AUC of 0.97, an accuracy of 91.27%, a precision of 0.94, a sensitivity of 0.92, and an F<sub>1</sub>-score of 0.94. After random search processing, the accuracy and AUC of AdaBoost improved. Its accuracy was 77.68% and its AUC was 0.86.</p><p><strong>Conclusions: </strong>This study offered insights into CHF risk prediction. Future research should focus on prospective studies, diverse data, advanced techniques, longitudinal studies, and exploring factor interactions for better CHF prevention and management.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e64972"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64972","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chronic heart failure (CHF) is a serious threat to human health, with high morbidity and mortality rates, imposing a heavy burden on the health care system and society. With the abundance of medical data and the rapid development of machine learning (ML) technologies, new opportunities are provided for in-depth investigation of the mechanisms of CHF and the construction of predictive models. The introduction of health ecology research methodology enables a comprehensive dissection of CHF risk factors from a wider range of environmental, social, and individual factors. This not only helps to identify high-risk groups at an early stage but also provides a scientific basis for the development of precise prevention and intervention strategies.
Objective: This study aims to use ML to construct a predictive model of the risk of occurrence of CHF and analyze the risk of CHF from a health ecology perspective.
Methods: This study sourced data from the Jackson Heart Study database. Stringent data preprocessing procedures were implemented, which included meticulous management of missing values and the standardization of data. Principal component analysis and random forest (RF) were used as feature selection techniques. Subsequently, several ML models, namely decision tree, RF, extreme gradient boosting, adaptive boosting (AdaBoost), support vector machine, naive Bayes model, multilayer perceptron, and bootstrap forest, were constructed, and their performance was evaluated. The effectiveness of the models was validated through internal validation using a 10-fold cross-validation approach on the training and validation sets. In addition, the performance metrics of each model, including accuracy, precision, sensitivity, F1-score, and area under the curve (AUC), were compared. After selecting the best model, we used hyperparameter optimization to construct a better model.
Results: RF-selected features (21 in total) had an average root mean square error of 0.30, outperforming principal component analysis. Synthetic Minority Oversampling Technique and Edited Nearest Neighbors showed better accuracy in data balancing. The AdaBoost model was most effective with an AUC of 0.86, accuracy of 75.30%, precision of 0.86, sensitivity of 0.69, and F1-score of 0.76. Validation on the training and validation sets through 10-fold cross-validation gave an AUC of 0.97, an accuracy of 91.27%, a precision of 0.94, a sensitivity of 0.92, and an F1-score of 0.94. After random search processing, the accuracy and AUC of AdaBoost improved. Its accuracy was 77.68% and its AUC was 0.86.
Conclusions: This study offered insights into CHF risk prediction. Future research should focus on prospective studies, diverse data, advanced techniques, longitudinal studies, and exploring factor interactions for better CHF prevention and management.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.