Diagnostic Decision-Making Variability Between Novice and Expert Optometrists for Glaucoma: Comparative Analysis to Inform AI System Design.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2025-01-29 DOI:10.2196/63109
Faisal Ghaffar, Nadine M Furtado, Imad Ali, Catherine Burns
{"title":"Diagnostic Decision-Making Variability Between Novice and Expert Optometrists for Glaucoma: Comparative Analysis to Inform AI System Design.","authors":"Faisal Ghaffar, Nadine M Furtado, Imad Ali, Catherine Burns","doi":"10.2196/63109","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While expert optometrists tend to rely on a deep understanding of the disease and intuitive pattern recognition, those with less experience may depend more on extensive data, comparisons, and external guidance. Understanding these variations is important for developing artificial intelligence (AI) systems that can effectively support optometrists with varying degrees of experience and minimize decision inconsistencies.</p><p><strong>Objective: </strong>The main objective of this study is to identify and analyze the variations in diagnostic decision-making approaches between novice and expert optometrists. By understanding these variations, we aim to provide guidelines for the development of AI systems that can support optometrists with varying levels of expertise. These guidelines will assist in developing AI systems for glaucoma diagnosis, ultimately enhancing the diagnostic accuracy of optometrists and minimizing inconsistencies in their decisions.</p><p><strong>Methods: </strong>We conducted in-depth interviews with 14 optometrists using within-subject design, including both novices and experts, focusing on their approaches to glaucoma diagnosis. The responses were coded and analyzed using a mixed method approach incorporating both qualitative and quantitative analysis. Statistical tests such as Mann-Whitney U and chi-square tests were used to find significance in intergroup variations. These findings were further supported by themes extracted through qualitative analysis, which helped to identify decision-making patterns and understand variations in their approaches.</p><p><strong>Results: </strong>Both groups showed lower concordance rates with clinical diagnosis, with experts showing almost double (7/35, 20%) concordance rates with limited data in comparison to novices (7/69, 10%), highlighting the impact of experience and data availability on clinical judgment; this rate increased to nearly 40% for both groups (experts: 5/12, 42% and novices: 8/21, 42%) when they had access to complete historical data of the patient. We also found statistically significant intergroup differences between the first visits and subsequent visits with a P value of less than .05 on the Mann-Whitney U test in many assessments. Furthermore, approaches to the exam assessment and decision differed significantly: experts emphasized comprehensive risk assessments and progression analysis, demonstrating cognitive efficiency and intuitive decision-making, while novices relied more on structured, analytical methods and external references. Additionally, significant variations in patient follow-up times were observed, with a P value of <.001 on the chi-square test, showing a stronger influence of experience on follow-up time decisions.</p><p><strong>Conclusions: </strong>The study highlights significant variations in the decision-making process of novice and expert optometrists in glaucoma diagnosis, with experience playing a key role in accuracy, approach, and management. These findings demonstrate the critical need for AI systems tailored to varying levels of expertise. They also provide insights for the future design of AI systems aimed at enhancing the diagnostic accuracy of optometrists and consistency across different expertise levels, ultimately improving patient outcomes in optometric practice.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e63109"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/63109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: While expert optometrists tend to rely on a deep understanding of the disease and intuitive pattern recognition, those with less experience may depend more on extensive data, comparisons, and external guidance. Understanding these variations is important for developing artificial intelligence (AI) systems that can effectively support optometrists with varying degrees of experience and minimize decision inconsistencies.

Objective: The main objective of this study is to identify and analyze the variations in diagnostic decision-making approaches between novice and expert optometrists. By understanding these variations, we aim to provide guidelines for the development of AI systems that can support optometrists with varying levels of expertise. These guidelines will assist in developing AI systems for glaucoma diagnosis, ultimately enhancing the diagnostic accuracy of optometrists and minimizing inconsistencies in their decisions.

Methods: We conducted in-depth interviews with 14 optometrists using within-subject design, including both novices and experts, focusing on their approaches to glaucoma diagnosis. The responses were coded and analyzed using a mixed method approach incorporating both qualitative and quantitative analysis. Statistical tests such as Mann-Whitney U and chi-square tests were used to find significance in intergroup variations. These findings were further supported by themes extracted through qualitative analysis, which helped to identify decision-making patterns and understand variations in their approaches.

Results: Both groups showed lower concordance rates with clinical diagnosis, with experts showing almost double (7/35, 20%) concordance rates with limited data in comparison to novices (7/69, 10%), highlighting the impact of experience and data availability on clinical judgment; this rate increased to nearly 40% for both groups (experts: 5/12, 42% and novices: 8/21, 42%) when they had access to complete historical data of the patient. We also found statistically significant intergroup differences between the first visits and subsequent visits with a P value of less than .05 on the Mann-Whitney U test in many assessments. Furthermore, approaches to the exam assessment and decision differed significantly: experts emphasized comprehensive risk assessments and progression analysis, demonstrating cognitive efficiency and intuitive decision-making, while novices relied more on structured, analytical methods and external references. Additionally, significant variations in patient follow-up times were observed, with a P value of <.001 on the chi-square test, showing a stronger influence of experience on follow-up time decisions.

Conclusions: The study highlights significant variations in the decision-making process of novice and expert optometrists in glaucoma diagnosis, with experience playing a key role in accuracy, approach, and management. These findings demonstrate the critical need for AI systems tailored to varying levels of expertise. They also provide insights for the future design of AI systems aimed at enhancing the diagnostic accuracy of optometrists and consistency across different expertise levels, ultimately improving patient outcomes in optometric practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Machine Learning-Based Risk Factor Analysis and Prediction Model Construction for the Occurrence of Chronic Heart Failure: Health Ecologic Study. Smart Contracts and Shared Platforms in Sustainable Health Care: Systematic Review. Diagnostic Decision-Making Variability Between Novice and Expert Optometrists for Glaucoma: Comparative Analysis to Inform AI System Design. The Social Construction of Categorical Data: Mixed Methods Approach to Assessing Data Features in Publicly Available Datasets. Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1